-
2
-
-
0000451722
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.56.12909
-
R. Fresard and G. Kotliar, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.56.12909 56, 12909 (1997).
-
(1997)
Phys. Rev. B
, vol.56
, pp. 12909
-
-
Fresard, R.1
Kotliar, G.2
-
3
-
-
3843080687
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.57.1362
-
G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.57.1362 57, 1362 (1986).
-
(1986)
Phys. Rev. Lett.
, vol.57
, pp. 1362
-
-
Kotliar, G.1
Ruckenstein, A.E.2
-
4
-
-
24444467134
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.29.3035
-
P. Coleman, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.29.3035 29, 3035 (1984).
-
(1984)
Phys. Rev. B
, vol.29
, pp. 3035
-
-
Coleman, P.1
-
5
-
-
0030528685
-
-
RMPHAT 0034-6861 10.1103/RevModPhys.68.13
-
A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.68.13 68, 13 (1996).
-
(1996)
Rev. Mod. Phys.
, vol.68
, pp. 13
-
-
Georges, A.1
Kotliar, G.2
Krauth, W.3
Rozenberg, M.J.4
-
6
-
-
0000857055
-
Metal-insulator transitions
-
DOI 10.1103/RevModPhys.70.1039
-
M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.70.1039 70, 1039 (1998). (Pubitemid 128159247)
-
(1998)
Reviews of Modern Physics
, vol.70
, Issue.4
, pp. 1039-1263
-
-
Imada, M.1
Fujimori, A.2
Tokura, Y.3
-
7
-
-
0023646228
-
-
SCIEAS 0036-8075 10.1126/science.235.4793.1196
-
P. Anderson, Science SCIEAS 0036-8075 10.1126/science.235.4793.1196 235, 1196 (2007).
-
(2007)
Science
, vol.235
, pp. 1196
-
-
Anderson, P.1
-
8
-
-
0001373256
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.49.5687
-
J. P. Lu, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.49.5687 49, 5687 (1994).
-
(1994)
Phys. Rev. B
, vol.49
, pp. 5687
-
-
Lu, J.P.1
-
9
-
-
0000290804
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.55.R4855
-
M. J. Rozenberg, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.55.R4855 55, R4855 (1997).
-
(1997)
Phys. Rev. B
, vol.55
, pp. 4855
-
-
Rozenberg, M.J.1
-
10
-
-
0001413434
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.58.R4199
-
J. E. Han, M. Jarrell, and D. L. Cox, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.58.R4199 58, R4199 (1998).
-
(1998)
Phys. Rev. B
, vol.58
, pp. 4199
-
-
Han, J.E.1
Jarrell, M.2
Cox, D.L.3
-
11
-
-
0037110103
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.66.165107
-
A. Koga, Y. Imai, and N. Kawakami, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.66.165107 66, 165107 (2002).
-
(2002)
Phys. Rev. B
, vol.66
, pp. 165107
-
-
Koga, A.1
Imai, Y.2
Kawakami, N.3
-
12
-
-
17744380424
-
Hund's coupling and the metal-insulator transition in the two-band Hubbard model
-
DOI 10.1140/epjb/e2005-00117-4
-
T. Pruschke and R. Bulla, Eur. Phys. J. B EPJBFY 1434-6028 10.1140/epjb/e2005-00117-4 44, 217 (2005). (Pubitemid 40574024)
-
(2005)
European Physical Journal B
, vol.44
, Issue.2
, pp. 217-224
-
-
Pruschke, T.1
Bulla, R.2
-
13
-
-
33746947888
-
Iron-based layered superconductor: LaOFeP
-
DOI 10.1021/ja063355c
-
Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H. Hosono, J. Am. Chem. Soc. JACSAT 0002-7863 10.1021/ja063355c 128, 10012 (2006). (Pubitemid 44202173)
-
(2006)
Journal of the American Chemical Society
, vol.128
, Issue.31
, pp. 10012-10013
-
-
Kamihara, Y.1
Hiramatsu, H.2
Hirano, M.3
Kawamura, R.4
Yanagi, H.5
Kamiya, T.6
Hosono, H.7
-
14
-
-
41449096395
-
c = 26 K
-
DOI 10.1021/ja800073m
-
Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. JACSAT 0002-7863 10.1021/ja800073m 130, 3296 (2008). (Pubitemid 351456027)
-
(2008)
Journal of the American Chemical Society
, vol.130
, Issue.11
, pp. 3296-3297
-
-
Kamihara, Y.1
Watanabe, T.2
Hirano, M.3
Hosono, H.4
-
15
-
-
70349456231
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.80.085101
-
M. Aichhorn, L. Pourovskii, V. Vildosola, M. Ferrero, O. Parcollet, T. Miyake, S. Georges, and A. Biermann, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.80.085101 80, 085101 (2009).
-
(2009)
Phys. Rev. B
, vol.80
, pp. 085101
-
-
Aichhorn, M.1
Pourovskii, L.2
Vildosola, V.3
Ferrero, M.4
Parcollet, O.5
Miyake, T.6
Georges, S.7
Biermann, A.8
-
16
-
-
77957553242
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.82.064504
-
M. Aichhorn, S. Biermann, T. Miyake, A. Georges, and M. Imada, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.82.064504 82, 064504 (2010).
-
(2010)
Phys. Rev. B
, vol.82
, pp. 064504
-
-
Aichhorn, M.1
Biermann, S.2
Miyake, T.3
Georges, A.4
Imada, M.5
-
17
-
-
44649085906
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.100.226402
-
K. Haule, J. Shim, and G. Kotliar, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.100.226402 100, 226402 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 226402
-
-
Haule, K.1
Shim, J.2
Kotliar, G.3
-
18
-
-
63449113922
-
-
NJOPFM 1367-2630 10.1088/1367-2630/11/2/025021
-
K. Haule and G. Kotliar, New J. Phys. NJOPFM 1367-2630 10.1088/1367-2630/11/2/025021 11, 025021 (2009).
-
(2009)
New J. Phys.
, vol.11
, pp. 025021
-
-
Haule, K.1
Kotliar, G.2
-
19
-
-
52149083231
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.101.126401
-
J. Wu, P. Phillips, and A. H. Castro Neto, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.101.126401 101, 126401 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 126401
-
-
Wu, J.1
Phillips, P.2
Castro Neto, A.H.3
-
20
-
-
77954717585
-
-
EULEEJ 0295-5075 10.1209/0295-5075/88/17010
-
S.-P. Kou, T. Li, and Z.-Y. Weng, Europhys. Lett. EULEEJ 0295-5075 10.1209/0295-5075/88/17010 88, 17010 (2009).
-
(2009)
Europhys. Lett.
, vol.88
, pp. 17010
-
-
Kou, S.-P.1
Li, T.2
Weng, Z.-Y.3
-
22
-
-
67650099715
-
-
NJOPFM 1367-2630 10.1088/1367-2630/11/5/055064
-
A. Hackl and M. Vojta, New J. Phys. NJOPFM 1367-2630 10.1088/1367-2630/ 11/5/055064 11, 055064 (2009).
-
(2009)
New J. Phys.
, vol.11
, pp. 055064
-
-
Hackl, A.1
Vojta, M.2
-
23
-
-
0000743943
-
-
EPJBFY 1434-6028 10.1140/epjb/e20020021
-
V. Anisimov, I. Nekrasov, D. Kondakov, T. Rice, and M. Sigrist, Eur. Phys. J. B EPJBFY 1434-6028 10.1140/epjb/e20020021 25, 191 (2002).
-
(2002)
Eur. Phys. J. B
, vol.25
, pp. 191
-
-
Anisimov, V.1
Nekrasov, I.2
Kondakov, D.3
Rice, T.4
Sigrist, M.5
-
24
-
-
63649118958
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.102.126401
-
L. de' Medici, S. R. Hassan, M. Capone, and X. Dai, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.102.126401 102, 126401 (2009).
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 126401
-
-
De Medici, L.1
Hassan, S.R.2
Capone, M.3
Dai, X.4
-
25
-
-
79952219954
-
-
0031-9007 10.1103/PhysRevLett.106.096401
-
J. Mravlje, M. Aichhorn, T. Miyake, K. Haule, G. Kotliar, and A. Georges, Phys. Rev. Lett. 0031-9007 10.1103/PhysRevLett.106.096401 106, 096401 (2011).
-
(2011)
Phys. Rev. Lett.
, vol.106
, pp. 096401
-
-
Mravlje, J.1
Aichhorn, M.2
Miyake, T.3
Haule, K.4
Kotliar, G.5
Georges, A.6
-
26
-
-
29744436813
-
Orbital-selective Mott transition in multiband systems: Slave-spin representation and dynamical mean-field theory
-
DOI 10.1103/PhysRevB.72.205124, 205124
-
L. de' Medici, A. Georges, and S. Biermann, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.72.205124 72, 205124 (2005). (Pubitemid 43029365)
-
(2005)
Physical Review B - Condensed Matter and Materials Physics
, vol.72
, Issue.20
, pp. 1-15
-
-
De'Medici, L.1
Georges, A.2
Biermann, S.3
-
27
-
-
77954808444
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.81.035106
-
S. R. Hassan and L. de' Medici, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.81.035106 81, 035106 (2010).
-
(2010)
Phys. Rev. B
, vol.81
, pp. 035106
-
-
Hassan, S.R.1
De Medici, L.2
-
28
-
-
12044253082
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.72.1545
-
M. Caffarel and W. Krauth, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.72.1545 72, 1545 (1994).
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 1545
-
-
Caffarel, M.1
Krauth, W.2
-
29
-
-
34548835484
-
High-Spin to low-Spin and orbital polarization transitions in multiorbital mott systems
-
DOI 10.1103/PhysRevLett.99.126405
-
P. Werner and A. J. Millis, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.99.126405 99, 126405 (2007). (Pubitemid 47443732)
-
(2007)
Physical Review Letters
, vol.99
, Issue.12
, pp. 126405
-
-
Werner, P.1
Millis, A.J.2
-
30
-
-
64849112524
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.79.115119
-
P. Werner, E. Gull, and A. J. Millis, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.79.115119 79, 115119 (2009).
-
(2009)
Phys. Rev. B
, vol.79
, pp. 115119
-
-
Werner, P.1
Gull, E.2
Millis, A.J.3
-
31
-
-
0000751011
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.54.R11026
-
O. Gunnarsson, E. Koch, and R. M. Martin, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.54.R11026 54, R11026 (1996).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 11026
-
-
Gunnarsson, O.1
Koch, E.2
Martin, R.M.3
-
32
-
-
79961115923
-
-
c2 may scale differently with the number of bands, it can be safely assumed that they both increase or they both decrease as a function of physical parameters.
-
c 2 may scale differently with the number of bands, it can be safely assumed that they both increase or they both decrease as a function of physical parameters.
-
-
-
-
33
-
-
0037113409
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.66.205102
-
S. Florens, A. Georges, G. Kotliar, and O. Parcollet, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.66.205102 66, 205102 (2002).
-
(2002)
Phys. Rev. B
, vol.66
, pp. 205102
-
-
Florens, S.1
Georges, A.2
Kotliar, G.3
Parcollet, O.4
-
34
-
-
0001504494
-
-
PRBMDO 1098-0121 10.1103/PhysRevB.54.R14221
-
G. Kotliar and H. Kajueter, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.54.R14221 54, 14221R (1996).
-
(1996)
Phys. Rev. B
, vol.54
-
-
Kotliar, G.1
Kajueter, H.2
-
35
-
-
70349904661
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.103.147205
-
A. H. Nevidomskyy and P. Coleman, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.103.147205 103, 147205 (2009).
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 147205
-
-
Nevidomskyy, A.H.1
Coleman, P.2
-
36
-
-
54849437797
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.101.166405
-
P. Werner, E. Gull, M. Troyer, and A. J. Millis, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.101.166405 101, 166405 (2008).
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 166405
-
-
Werner, P.1
Gull, E.2
Troyer, M.3
Millis, A.J.4
-
37
-
-
3142521719
-
-
PRLTAO 0031-9007 10.1103/PhysRevLett.92.216402
-
A. Koga, N. Kawakami, T. M. Rice, and M. Sigrist, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.92.216402 92, 216402 (2004).
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 216402
-
-
Koga, A.1
Kawakami, N.2
Rice, T.M.3
Sigrist, M.4
-
38
-
-
29744443092
-
Dynamical behavior across the Mott transition of two bands with different bandwidths
-
DOI 10.1103/PhysRevB.72.205126, 205126
-
M. Ferrero, F. Becca, M. Fabrizio, and M. Capone, Phys. Rev. B PRBMDO 1098-0121 10.1103/PhysRevB.72.205126 72, 205126 (2005). (Pubitemid 43029348)
-
(2005)
Physical Review B - Condensed Matter and Materials Physics
, vol.72
, Issue.20
, pp. 1-11
-
-
Ferrero, M.1
Becca, F.2
Fabrizio, M.3
Capone, M.4
-
39
-
-
27144472434
-
Novel mott transitions in a nonisotropic two-band hubbard model
-
DOI 10.1103/PhysRevLett.95.116402, 116402
-
A. Liebsch, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95. 116402 95, 116402 (2005). (Pubitemid 41505724)
-
(2005)
Physical Review Letters
, vol.95
, Issue.11
, pp. 1-4
-
-
Liebsch, A.1
-
40
-
-
28844470878
-
Non-fermi-liquid behavior and double-exchange physics in orbital-selective mott systems
-
DOI 10.1103/PhysRevLett.95.206401, 206401
-
S. Biermann, L. de' Medici, and A. Georges, Phys. Rev. Lett. PRLTAO 0031-9007 10.1103/PhysRevLett.95.206401 95, 206401 (2005). (Pubitemid 41777139)
-
(2005)
Physical Review Letters
, vol.95
, Issue.20
, pp. 1-4
-
-
Biermann, S.1
De'Medici, L.2
Georges, A.3
-
41
-
-
77957787501
-
-
JLTPAC 0022-2291 10.1007/s10909-010-0206-3
-
M. Vojta, J. Low Temp. Phys. JLTPAC 0022-2291 10.1007/s10909-010-0206-3 161, 203 (2010).
-
(2010)
J. Low Temp. Phys.
, vol.161
, pp. 203
-
-
Vojta, M.1
-
42
-
-
79961116057
-
-
n. This represents an infinite quasiparticle lifetime at the Fermi energy, which, however, is very sensitive to temperature. Accordingly, when using a finite low-energy resolution, as is done by the discrete exact diagonalization impurity solver (nine total sites) that was used here, this strong temperature dependence shows up as a strong dependence on the low-energy resolution, leading to strong violations of the pinning condition of the zero-energy value of the spectral function of the metallic bands, as is reported in Fig. .
-
n. This represents an infinite quasiparticle lifetime at the Fermi energy, which, however, is very sensitive to temperature. Accordingly, when using a finite low-energy resolution, as is done by the discrete exact diagonalization impurity solver (nine total sites) that was used here, this strong temperature dependence shows up as a strong dependence on the low-energy resolution, leading to strong violations of the pinning condition of the zero-energy value of the spectral function of the metallic bands, as is reported in Fig..
-
-
-
-
43
-
-
79961111410
-
-
It is worth stressing that the models studied in this paper have zero hybridization between the bands. The conclusions of this paper are indeed valid for weakly hybridized systems, i.e., they can be extended to nonzero hybridizations with some care. The notion of weakly hybridized system is a basis-independent one. Indeed even if a change of basis can always diagonalize the noninteracting band structure, Wannier orbitals in the new basis are not localized, in general, and the interaction matrix is very non-local then. We call a "weakly hybridized system" one that can be rotated in a basis where both the interaction is local and the hybridization between the orbitals is small. These two conditions cannot be satisfied for all band structures, and are on the contrary a significant constraint, which is material specific.
-
It is worth stressing that the models studied in this paper have zero hybridization between the bands. The conclusions of this paper are indeed valid for weakly hybridized systems, i.e., they can be extended to nonzero hybridizations with some care. The notion of weakly hybridized system is a basis-independent one. Indeed even if a change of basis can always diagonalize the noninteracting band structure, Wannier orbitals in the new basis are not localized, in general, and the interaction matrix is very non-local then. We call a "weakly hybridized system" one that can be rotated in a basis where both the interaction is local and the hybridization between the orbitals is small. These two conditions cannot be satisfied for all band structures, and are on the contrary a significant constraint, which is material specific.
-
-
-
-
44
-
-
79961123396
-
-
note
-
A comment on the main limitation of DMFT, namely the neglect of nonlocal correlations, is in order. DMFT has been successful in describing the single-band Mott transition, and this description has found many experimental confirmations. However, it is clear that this approach misses a few aspects of the single-band scenario. In single-site DMFT the effective mass diverges at the Mott transition and no precursor effects of the low-temperature ordered phases (such as the antiferromagnet which is the actual ground state in the DMFT treatment of the Hubbard model) in the paramagnetic high-temperature phase are present. Both of these features are artifacts of the local mean field (and the simpler slave variable local mean-fields are no exceptions), and are corrected when more refined approaches, tailored to address nonlocal correlations (such as cluster extensions of these methods, or studies of fluctuations around controlled saddle points representing the local mean-field, when this is possible), are used. None of these aspects is crucial to the present study however, and we have used the (multiorbital) local mean-field approach. The refinements to our general picture that extensions of these multiorbital methods including spatial correlations may yield is surely interesting, and is left for future work.
-
-
-
|