-
1
-
-
77953440627
-
-
1539-3755 10.1103/PhysRevE.81.061102
-
G. F. Mazenko, Phys. Rev. E 1539-3755 10.1103/PhysRevE.81.061102 81, 061102 (2010). (Referred throughout as FTSPD.)
-
(2010)
Phys. Rev. e
, vol.81
, pp. 061102
-
-
Mazenko, G.F.1
-
3
-
-
13144302948
-
Mode-coupling theory and the glass transition in supercooled liquids
-
DOI 10.1103/RevModPhys.76.785
-
S. Das, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.76.785 76, 785 (2004). (Pubitemid 40180192)
-
(2004)
Reviews of Modern Physics
, vol.76
, Issue.3
, pp. 785-851
-
-
Das, S.P.1
-
4
-
-
40849126943
-
-
NUPBBO 0550-3213 10.1016/j.nuclphysb.2007.11.039
-
A. Crisanti, Nucl. Phys. B NUPBBO 0550-3213 10.1016/j.nuclphysb.2007.11. 039 796, 425 (2008).
-
(2008)
Nucl. Phys. B
, vol.796
, pp. 425
-
-
Crisanti, A.1
-
5
-
-
0003625787
-
-
in edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam
-
W. Goetze in Liquids, Freezing and Glass Transition, edited by, J. P. Hansen, D. Levesque, and, J. Zinn-Justin, (North-Holland, Amsterdam, 1991) Chap. 5;
-
(1991)
Liquids, Freezing and Glass Transition
-
-
Goetze, W.1
-
6
-
-
13144302948
-
Mode-coupling theory and the glass transition in supercooled liquids
-
DOI 10.1103/RevModPhys.76.785
-
S. Das, Rev. Mod. Phys. RMPHAT 0034-6861 10.1103/RevModPhys.76.785 76, 785 (2004). (Pubitemid 40180192)
-
(2004)
Reviews of Modern Physics
, vol.76
, Issue.3
, pp. 785-851
-
-
Das, S.P.1
-
7
-
-
85014175361
-
-
There is an exact solution to the Percus-Yevick approximation for hard spheres. See the discussion in Chap. 4 of, Academic, New York
-
There is an exact solution to the Percus-Yevick approximation for hard spheres. See the discussion in Chap. 4 of J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, 3rd ed. (Academic, New York, 2006);
-
(2006)
Theory of Simple Liquids
-
-
Hansen, J.-P.1
McDonald, I.R.2
-
8
-
-
0002696364
-
-
PHRVAO 0031-899X 10.1103/PhysRev.145.83
-
N. W. Ashcroft and J. Lekner, Phys. Rev. PHRVAO 0031-899X 10.1103/PhysRev.145.83 145, 83 (1966).
-
(1966)
Phys. Rev.
, vol.145
, pp. 83
-
-
Ashcroft, N.W.1
Lekner, J.2
-
9
-
-
79961089143
-
-
(private communication
-
A. Crisanti (private communication).
-
-
-
A. Crisanti1
-
10
-
-
0003625787
-
-
12 model and stretching are discussed in detail by, in edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam
-
12 model and stretching are discussed in detail by W. Goetze, in Liquids, Freezing and Glass Transition, edited by, J. P. Hansen, D. Levesque, and, J. Zinn-Justin, (North-Holland, Amsterdam, 1991) Chap. 5.
-
(1991)
Liquids, Freezing and Glass Transition
-
-
Goetze, W.1
-
11
-
-
58149330643
-
-
JCOMEL 0953-8984 10.1088/0953-8984/20/49/494202
-
P. N. Pusey, J. Phys.: Condens. Matter JCOMEL 0953-8984 10.1088/0953-8984/20/49/494202 20, 434202 (2008).
-
(2008)
J. Phys.: Condens. Matter
, vol.20
, pp. 434202
-
-
Pusey, P.N.1
-
12
-
-
0002286325
-
-
The classical operator formalism for Newtonian dynamics was introduced by, PNASA6 0027-8424 10.1073/pnas.18.1.70
-
The classical operator formalism for Newtonian dynamics was introduced by J. von Neumann, Proc. Natl. Acad. Sci. USA PNASA6 0027-8424 10.1073/pnas.18.1.70 18, 70 (1932);
-
(1932)
Proc. Natl. Acad. Sci. USA
, vol.18
, pp. 70
-
-
Von Neumann, J.1
-
14
-
-
79961045599
-
-
The history of Smoluchowski dynamics is discussed in FTSPD
-
The history of Smoluchowski dynamics is discussed in FTSPD.
-
-
-
-
15
-
-
79961066603
-
-
A brief discussion of the storied history of Brownian motion is given in Refs. [2] and [20] in FTSPD. We will refer to the noninteracting limit of Smoluchowski dynamics as the Brownian gas
-
A brief discussion of the storied history of Brownian motion is given in Refs. [2] and [20] in FTSPD. We will refer to the noninteracting limit of Smoluchowski dynamics as the Brownian gas.
-
-
-
-
16
-
-
0030597463
-
-
JPHAC5 0305-4470 10.1088/0305-4470/29/24/001
-
D. S. Dean, J. Phys. A JPHAC5 0305-4470 10.1088/0305-4470/29/24/001 29, L613 (1996).
-
(1996)
J. Phys. A
, vol.29
, pp. 613
-
-
Dean, D.S.1
-
17
-
-
0001041531
-
-
ZPCMDN 0722-3277 10.1007/s002570050396
-
K. Kawasaki and S. Miyazima, Z. Phys. B ZPCMDN 0722-3277 10.1007/s002570050396 103, 423 (1997).
-
(1997)
Z. Phys. B
, vol.103
, pp. 423
-
-
Kawasaki, K.1
Miyazima, S.2
-
18
-
-
79961096391
-
-
MSR actions are discussed in Appendix A in FTSPD
-
MSR actions are discussed in Appendix A in FTSPD.
-
-
-
-
19
-
-
79961098374
-
-
AIP
-
B. Kim and K. Kawasaki, Complex Systems: 5th International Workshop on Complex Systems, Sendai (Japan), Sept. 22-28, 2007 AIP Conf. Proc. No. 982 (AIP, 2008), p. 223.
-
(2008)
Complex Systems: 5th International Workshop on Complex Systems, Sendai (Japan), Sept. 22-28, 2007 AIP Conf. Proc. No. 982
, pp. 223
-
-
Kim, B.1
Kawasaki, K.2
-
20
-
-
44449157712
-
-
APCPCS 1751-8113 10.1088/1751-8113/41/23/235002
-
R. Velenich, C. Chamon, L. Cugliandolo, and D. Kreimer, J. Phys. A APCPCS 1751-8113 10.1088/1751-8113/41/23/235002 41, 235002 (2008).
-
(2008)
J. Phys. A
, vol.41
, pp. 235002
-
-
Velenich, R.1
Chamon, C.2
Cugliandolo, L.3
Kreimer, D.4
-
21
-
-
79961062127
-
-
See the discussion in FTSPD
-
See the discussion in FTSPD.
-
-
-
-
22
-
-
79961065162
-
-
The static Ornstein-Zernike relation that connects the radial distribution function to the direct correlation function
-
The static Ornstein-Zernike relation that connects the radial distribution function to the direct correlation function.
-
-
-
-
23
-
-
79961082186
-
-
In different contexts the kinetic kernels have different names. In the field-theory context the kernels are typically called self-energies, in the kinetic theory case, where the analysis is in terms of retarded quantities, the kernel is called a memory function, and in the general case it can be called a dynamic direct correlation function
-
In different contexts the kinetic kernels have different names. In the field-theory context the kernels are typically called self-energies, in the kinetic theory case, where the analysis is in terms of retarded quantities, the kernel is called a memory function, and in the general case it can be called a dynamic direct correlation function.
-
-
-
-
25
-
-
79961052340
-
-
An advantage of working in equilibrium is that we can take the initial time to minus infinity. We called this the field-theory protocol in FTSPD
-
An advantage of working in equilibrium is that we can take the initial time to minus infinity. We called this the field-theory protocol in FTSPD.
-
-
-
|