메뉴 건너뛰기




Volumn 62, Issue 3, 2011, Pages 1127-1134

Approximate solution of fractional integro-differential equations by Taylor expansion method

Author keywords

Approximate solution; Fractional integro differential equation; Fredholm equations; Riemann Liouville; Taylor expansion; Volterra equations

Indexed keywords

APPROXIMATE SOLUTION; FRACTIONAL INTEGRO-DIFFERENTIAL EQUATION; FREDHOLM EQUATION; RIEMANN-LIOUVILLE; TAYLOR EXPANSIONS; VOLTERRA EQUATION;

EID: 79960997911     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2011.03.037     Document Type: Article
Times cited : (103)

References (15)
  • 3
    • 25644439033 scopus 로고    scopus 로고
    • Analytical solution of the Bagley Torvik equation by Adomian decomposition method
    • DOI 10.1016/j.amc.2004.09.006, PII S0096300304006125
    • S.S. Ray, and R.K. Bera Analytical solution of the Bagley Torvik equation by Adomian decomposition method Appl. Math. Comput. 168 2005 398 410 (Pubitemid 41383669)
    • (2005) Applied Mathematics and Computation , vol.168 , Issue.1 , pp. 398-410
    • Ray, S.S.1    Bera, R.K.2
  • 4
    • 33646161468 scopus 로고    scopus 로고
    • Numerical solution of fractional integro-differential equations by collocation method
    • E.A. Rawashdeh Numerical solution of fractional integro-differential equations by collocation method Appl. Math. Comput. 176 2006 1 6
    • (2006) Appl. Math. Comput. , vol.176 , pp. 1-6
    • Rawashdeh, E.A.1
  • 5
    • 0023842475 scopus 로고
    • Iterated Galerkin methods for linear integro-differential equations
    • DOI 10.1016/0377-0427(88)90388-3
    • W. Volk The iterated Galerkin methods for linear integro-differential equations J. Comput. Appl. Math. 21 1988 63 74 (Pubitemid 18550825)
    • (1988) Journal of Computational and Applied Mathematics , vol.21 , Issue.1 , pp. 63-74
    • Volk, W.1
  • 6
    • 0031166382 scopus 로고    scopus 로고
    • Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution
    • PII S016892749600075X
    • H. Brunner, A. Makroglou, and K. Miller Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution Appl. Numer. Math. 23 1997 381 402 (Pubitemid 127438046)
    • (1997) Applied Numerical Mathematics , vol.23 , Issue.4 , pp. 381-402
    • Brunner, H.1    Makroglou, A.2    Miller, R.K.3
  • 7
    • 0040714267 scopus 로고    scopus 로고
    • Interpolation correction for collocation solutions of Fredholm integro-defferential equations
    • Q. Hu Interpolation correction for collocation solutions of Fredholm integro-differential equation Math. Comput. 223 1998 987 999 (Pubitemid 128382327)
    • (1998) Mathematics of Computation , vol.67 , Issue.223 , pp. 987-999
    • Hu, Q.1
  • 8
    • 0037809668 scopus 로고    scopus 로고
    • Numerical solution of a special type of integro-differential equations
    • M.T. Rashed Numerical solution of a special type of integro-differential equations Appl. Math. Comput. 143 2003 73 88
    • (2003) Appl. Math. Comput. , vol.143 , pp. 73-88
    • Rashed, M.T.1
  • 9
    • 0008254857 scopus 로고
    • A Taylor expansion approach for solving integral equations
    • R.P. Kanwall, and K.C. Liu A Taylor expansion approach for solving integral equations Int. J. Math. Ed. Sci. Technol. 20 1989 411 414
    • (1989) Int. J. Math. Ed. Sci. Technol. , vol.20 , pp. 411-414
    • Kanwall, R.P.1    Liu, K.C.2
  • 10
    • 85016783294 scopus 로고    scopus 로고
    • A method for the approximate solution of the second-order linear differential equations in terms of Taylor polynomials
    • M. Sezer A method for the approximate solution of the second-order linear differential equations in terms of Taylor polynomials Int. J. Math. Ed. Sci. Technol. 27 1996 821 834 (Pubitemid 126156135)
    • (1996) Int. J. Math. Ed. Sci. Technol. , vol.27 , Issue.6 , pp. 821-834
    • Sezer, M.1
  • 11
    • 0008173703 scopus 로고
    • Taylor polynomial solution of Volterra integral equations
    • M. Sezer Taylor polynomial solution of Volterra integral equations Int. J. Math. Ed. Sci. Technol. 25 1994 625 633
    • (1994) Int. J. Math. Ed. Sci. Technol. , vol.25 , pp. 625-633
    • Sezer, M.1
  • 12
    • 0037089760 scopus 로고    scopus 로고
    • Taylor polynomial solutions of nonlinear Volterra-Fredholm integral equations
    • DOI 10.1016/S0096-3003(00)00165-X, PII S009630030000165X
    • S. Yalcinbas Taylor polynomial solutions of nonlinear Volterra C Fredholm integral equations Appl. Math. Comput. 127 2002 195 206 (Pubitemid 34116048)
    • (2002) Applied Mathematics and Computation , vol.127 , Issue.2-3 , pp. 195-206
    • Yalcinbas, S.1
  • 13
    • 0000992795 scopus 로고    scopus 로고
    • The approximate solution of high-order linear Volterra Fredholm integro-differential equations in terms of Taylor polynomials
    • S. Yalcinbas, and M. Sezer The approximate solution of high-order linear Volterra Fredholm integro-differential equations in terms of Taylor polynomials Appl. Math. Comput. 112 2000 291 308
    • (2000) Appl. Math. Comput. , vol.112 , pp. 291-308
    • Yalcinbas, S.1    Sezer, M.2
  • 14
    • 48049097506 scopus 로고    scopus 로고
    • Approximate solution of Abel integral equation
    • L. Huang, X.-F. Li, and Y. Huang Approximate solution of Abel integral equation Comput. Math. Appl. 56 2008 1748 1757
    • (2008) Comput. Math. Appl. , vol.56 , pp. 1748-1757
    • Huang, L.1    Li, X.-F.2    Huang, Y.3
  • 15
    • 78449241111 scopus 로고    scopus 로고
    • A new Abel inversion by means of the integrals of an input function with noise
    • X.-F. Li, L. Huang, and Y. Huang A new Abel inversion by means of the integrals of an input function with noise J. Phys. A: Math. Theor. 40 2007 347 360
    • (2007) J. Phys. A: Math. Theor. , vol.40 , pp. 347-360
    • Li, X.-F.1    Huang, L.2    Huang, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.