메뉴 건너뛰기




Volumn 17, Issue 7, 2011, Pages 487-503

Estimating stochastic volatility models using integrated nested laplace approximations

Author keywords

Approximate bayesian inference; Laplace approximation; Latent gaussian models; Stochastic volatility model

Indexed keywords


EID: 79960968913     PISSN: 1351847X     EISSN: 14664364     Source Type: Journal    
DOI: 10.1080/1351847X.2010.495475     Document Type: Article
Times cited : (21)

References (35)
  • 1
    • 0030537138 scopus 로고    scopus 로고
    • GMM estimation of a stochastic volatility model: A monte carlo study
    • Andersen, T., and B. Sorensen. 1996. GMM estimation of a stochastic volatility model: A Monte Carlo study. Journal of Business and Economic Statistics 13, no. 3: 329-52.
    • (1996) Journal of Business and Economic Statistics , vol.13 , Issue.3 , pp. 329-352
    • Andersen, T.1    Sorensen, B.2
  • 2
    • 0002775221 scopus 로고    scopus 로고
    • Efficient method of moments estimation of a stochastic volatility model: A monte carlo study
    • Andersen, T., H. Chung, and B. Sorensen. 1999. Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study. Journal of Econometrics 91, no. 1: 61-87.
    • (1999) Journal of Econometrics , vol.91 , Issue.1 , pp. 61-87
    • Andersen, T.1    Chung, H.2    Sorensen, B.3
  • 3
    • 0035583279 scopus 로고    scopus 로고
    • On the normal inverse Gaussian stochastic volatility model
    • Andersson, J. 2001. On the normal inverse Gaussian stochastic volatility model. Journal of Business and Economic Statistics 19, no. 1: 44-54.
    • (2001) Journal of Business and Economic Statistics , vol.19 , Issue.1 , pp. 44-54
    • Andersson, J.1
  • 4
    • 0001122047 scopus 로고    scopus 로고
    • Statistical applications of the multivariate skew-normal distribution
    • Azzalini, A., and A. Capitanio. 1999. Statistical applications of the multivariate skew-normal distribution. Journal of Royal Statistical Society, Series B 61, no. 3: 579-602.
    • (1999) Journal of Royal Statistical Society, Series B , vol.61 , Issue.3 , pp. 579-602
    • Azzalini, A.1    Capitanio, A.2
  • 5
    • 0031524138 scopus 로고    scopus 로고
    • Normal inverse Gaussian distributions and stochastic volatility modelling
    • Barndorff-Nielsen, O.E. 1997. Normal inverse Gaussian distributions and stochastic volatility modelling. Scandinavian Journal of Statistics 24, no. 1: 1-13.
    • (1997) Scandinavian Journal of Statistics , vol.24 , Issue.1 , pp. 1-13
    • Barndorff-Nielsen, O.E.1
  • 6
    • 42449156579 scopus 로고
    • Generalized autoregressive conditional heteroskedasticity
    • Bollerslev, T. 1986. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics 31, no. 3: 307-27.
    • (1986) Journal of Econometrics , vol.31 , Issue.3 , pp. 307-327
    • Bollerslev, T.1
  • 7
    • 30244499616 scopus 로고    scopus 로고
    • Quantification of risk in Norwegian stocks via the normal inverse Gaussian distribution
    • eds. R. Nordberg et al., Tromsø, Norway
    • Bølviken, E., and F.E. Benth. 2000. Quantification of risk in Norwegian stocks via the normal inverse Gaussian distribution. In Proceedings of the AFIR 2000 colloquium, eds. R. Nordberg et al., Tromsø, Norway, 87-98.
    • (2000) Proceedings of the AFIR 2000 Colloquium , pp. 87-98
    • Bølviken, E.1    Benth, F.E.2
  • 8
    • 10244229626 scopus 로고    scopus 로고
    • Estimation methods for stochastic volatility models:A survey
    • Broto, C., and E. Puiz. 2004. Estimation methods for stochastic volatility models:A survey. Journal of Economic Surveys 18, no. 5: 613-49.
    • (2004) Journal of Economic Surveys , vol.18 , Issue.5 , pp. 613-649
    • Broto, C.1    Puiz, E.2
  • 9
    • 15744379106 scopus 로고    scopus 로고
    • Persistence and kurtosis in GARCH and stochastic volatility models
    • Carnero, M.A., D. Pena, and E. Ruiz. 2004. Persistence and kurtosis in GARCH and stochastic volatility models. Journal of Financial Econometrics 2, no. 2: 319-42.
    • (2004) Journal of Financial Econometrics , vol.2 , Issue.2 , pp. 319-342
    • Carnero, M.A.1    Pena, D.2    Ruiz, E.3
  • 10
    • 0011716069 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods for stochastic volatility models
    • Chib, S., F. Nardari, and N. Shephard. 2002. Markov chain Monte Carlo methods for stochastic volatility models. Journal of Econometrics 108, no. 2: 281-316.
    • (2002) Journal of Econometrics , vol.108 , Issue.2 , pp. 281-316
    • Chib, S.1    Nardari, F.2    Shephard, N.3
  • 11
    • 43949160158 scopus 로고
    • Stochastic volatility in asset prices: Estimation with simulated maximum likelihood
    • Danielsson, J. 1994. Stochastic volatility in asset prices: Estimation with simulated maximum likelihood. Journal of Econometrics 64, no. 1: 375-400.
    • (1994) Journal of Econometrics , vol.64 , Issue.1 , pp. 375-400
    • Danielsson, J.1
  • 12
    • 84972495814 scopus 로고
    • Hyperbolic distributions in finance
    • Eberlein, E., and U. Keller. 1995. Hyperbolic distributions in finance. Bernoulli, 1, no. 3: 281-99.
    • (1995) Bernoulli , vol.1 , Issue.3 , pp. 281-299
    • Eberlein, E.1    Keller, U.2
  • 13
    • 0142188082 scopus 로고    scopus 로고
    • The impact of jumps in volatility and returns
    • Eraker, B., M. Johannes, and N. Polson. 2003. The impact of jumps in volatility and returns. The Journal of Finance 58, no. 3: 1269-300.
    • (2003) The Journal of Finance , vol.58 , Issue.3 , pp. 1269-1300
    • Eraker, B.1    Johannes, M.2    Polson, N.3
  • 14
    • 0036403602 scopus 로고    scopus 로고
    • Bridging the gap between the distribution of realized (ecu) volatility and ARCH modeling (of the euro): The GARCH-NIG model
    • Forsberg, L., and T. Bollerslev. 2002. Bridging the gap between the distribution of realized (ecu) volatility and ARCH modeling (of the euro): The GARCH-NIG model. Journal of Applied Econometrics 17, no. 5: 535-48.
    • (2002) Journal of Applied Econometrics , vol.17 , Issue.5 , pp. 535-548
    • Forsberg, L.1    Bollerslev, T.2
  • 15
    • 0030490795 scopus 로고    scopus 로고
    • Estimation of an asymmetric stochastic volatility model for asset returns
    • Harvey, A.C., and N. Shephard. 1996. Estimation of an asymmetric stochastic volatility model for asset returns. Journal of Business and Economic Statistics 14, no. 3, 429-34.
    • (1996) Journal of Business and Economic Statistics , vol.14 , Issue.3 , pp. 429-434
    • Harvey, A.C.1    Shephard, N.2
  • 16
  • 18
    • 0142045265 scopus 로고    scopus 로고
    • The NIG-S & ARCH model: A fat-tailed stochastic, and autoregressive conditional heteroscedastic volatility model
    • Jensen, M.B., and A. Lunde. 2001. The NIG-S & ARCH model: A fat-tailed stochastic, and autoregressive conditional heteroscedastic volatility model. Econometrics Journal 4, no. 2, 319-42.
    • (2001) Econometrics Journal , vol.4 , Issue.2 , pp. 319-342
    • Jensen, M.B.1    Lunde, A.2
  • 19
    • 0001251517 scopus 로고    scopus 로고
    • Stochastic volatility: Likelihood inference and comparison with arch models
    • Kim, S., N. Shepard, and S. Chib. 1998. Stochastic volatility: Likelihood inference and comparison with arch models. Review of Economic Studies 65, no. 3: 361-93.
    • (1998) Review of Economic Studies , vol.65 , Issue.3 , pp. 361-393
    • Kim, S.1    Shepard, N.2    Chib, S.3
  • 20
    • 0034396460 scopus 로고    scopus 로고
    • Stochastic volatility models: Conditional normality versus heavy-tailed distributions
    • Liesenfeld, R., and R. Jung. 2000. Stochastic volatility models: Conditional normality versus heavy-tailed distributions. Journal of Applied Econometrics 15, no. 2: 137-60.
    • (2000) Journal of Applied Econometrics , vol.15 , Issue.2 , pp. 137-160
    • Liesenfeld, R.1    Jung, R.2
  • 21
    • 0009414766 scopus 로고    scopus 로고
    • Risk analysis and the NIG distribution
    • Lillestøl, J. 2000. Risk analysis and the NIG distribution. Journal of Risk 2, no. 4: 41-56.
    • (2000) Journal of Risk , vol.2 , Issue.4 , pp. 41-56
    • Lillestøl, J.1
  • 23
    • 0000518006 scopus 로고    scopus 로고
    • BUGS for a Bayesian analysis of stochastic volatility models
    • Mayer, R., and J. Yu. 2000. BUGS for a Bayesian analysis of stochastic volatility models. Econometrics Journal 3, no. 2: 198-215.
    • (2000) Econometrics Journal , vol.3 , Issue.2 , pp. 198-215
    • Mayer, R.1    Yu, J.2
  • 26
    • 62849120031 scopus 로고    scopus 로고
    • Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations
    • Rue, H., S. Martino, and N. Chopin. 2009. Approximate Bayesian inference for latent Gaussian models using integrated nested Laplace approximations. Journal of the Royal Statistical Society, Series B 71, no. 2: 319-92.
    • (2009) Journal of the Royal Statistical Society, Series B , vol.71 , Issue.2 , pp. 319-392
    • Rue, H.1    Martino, S.2    Chopin, N.3
  • 27
    • 43949151038 scopus 로고
    • Quasi-maximum likelihood estimation of stochastic volatility models
    • Ruiz, R. 1994. Quasi-maximum likelihood estimation of stochastic volatility models. Journal of Econometrics 63, no. 1: 289-306.
    • (1994) Journal of Econometrics , vol.63 , Issue.1 , pp. 289-306
    • Ruiz, R.1
  • 28
    • 0001464668 scopus 로고    scopus 로고
    • The normal inverse Gaussian Levy process: Simulation and approximation
    • Rydberg, T.H. 1997. The normal inverse Gaussian Levy process: Simulation and approximation. Communications in Statistics-Stochastic Models 13, no. 4: 887-910.
    • (1997) Communications In Statistics-Stochastic Models , vol.13 , Issue.4 , pp. 887-910
    • Rydberg, T.H.1
  • 29
    • 0003258788 scopus 로고    scopus 로고
    • Likelihood analysis of non-Gaussian measurement time series
    • Shephard, N., and M. Pitt. 1997. Likelihood analysis of non-Gaussian measurement time series. Biometrika 84, no. 3: 653-67.
    • (1997) Biometrika , vol.84 , Issue.3 , pp. 653-667
    • Shephard, N.1    Pitt, M.2
  • 31
    • 0000679352 scopus 로고
    • Financial returns modelled by the product of two stochastic processes - a study of daily sugar prices 1961-1979
    • ed. O.D. Anderson. Amsterdam: North Holland
    • Taylor, S. 1982. Financial returns modelled by the product of two stochastic processes - a study of daily sugar prices 1961-1979. In Time series analysis: Theory and practice 1, ed. O.D. Anderson. Amsterdam: North Holland, 203-26.
    • (1982) Time Series Analysis: Theory and Practice 1 , pp. 203-226
    • Taylor, S.1
  • 32
    • 84950871099 scopus 로고
    • Accurate approximations for posterior moments and marginal densities
    • Tierney, L., and J.B. Kadane. 1986. Accurate approximations for posterior moments and marginal densities. Journal of American Statistical Association 81, no. 393: 82-86.
    • (1986) Journal of American Statistical Association , vol.81 , Issue.393 , pp. 82-86
    • Tierney, L.1    Kadane, J.B.2
  • 33
    • 0005789445 scopus 로고    scopus 로고
    • Risk estimation using the normal inverse Gaussian distribution
    • Venter, J.H., and P.J. de Jongh. 2002. Risk estimation using the normal inverse Gaussian distribution. Journal of Risk 4, no. 2: 1-24.
    • (2002) Journal of Risk , vol.4 , Issue.2 , pp. 1-24
    • Venter, J.H.1    de Jongh, P.J.2
  • 34
    • 27344458076 scopus 로고    scopus 로고
    • Selecting an innovation distribution for GARCH models to improve efficiency of risk and volatility estimation
    • Venter, J.H., and P.J. de Jongh. 2004. Selecting an innovation distribution for GARCH models to improve efficiency of risk and volatility estimation. Journal of Risk 6, no. 3: 27-53.
    • (2004) Journal of Risk , vol.6 , Issue.3 , pp. 27-53
    • Venter, J.H.1    de Jongh, P.J.2
  • 35
    • 19744365632 scopus 로고    scopus 로고
    • On leverage in a stochastic volatility models
    • Yu, J. 2005. On leverage in a stochastic volatility models. Journal of Econometrics 127, no. 2: 165-78.
    • (2005) Journal of Econometrics , vol.127 , Issue.2 , pp. 165-178
    • Yu, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.