-
1
-
-
41549097210
-
Translational control by cytoplasmic polyadenylation in Xenopus oocytes
-
Radford H.E., Meijer H.A., de Moor C.H. Translational control by cytoplasmic polyadenylation in Xenopus oocytes. Biochim Biophys Acta 2008, 1779:217-229.
-
(2008)
Biochim Biophys Acta
, vol.1779
, pp. 217-229
-
-
Radford, H.E.1
Meijer, H.A.2
de Moor, C.H.3
-
2
-
-
49349093646
-
Sequential waves of polyadenylation and deadenylation define a translation circuit that drives meiotic progression
-
Belloc E., Pique M., Mendez R. Sequential waves of polyadenylation and deadenylation define a translation circuit that drives meiotic progression. Biochem Soc Trans 2008, 36:665-670.
-
(2008)
Biochem Soc Trans
, vol.36
, pp. 665-670
-
-
Belloc, E.1
Pique, M.2
Mendez, R.3
-
3
-
-
34249908103
-
CPEB: a life in translation
-
Richter J.D. CPEB: a life in translation. Trends Biochem Sci 2007, 32:279-285.
-
(2007)
Trends Biochem Sci
, vol.32
, pp. 279-285
-
-
Richter, J.D.1
-
4
-
-
40449092963
-
Trading translation with RNA-binding proteins
-
Abaza I., Gebauer F. Trading translation with RNA-binding proteins. RNA 2008, 14:404-409.
-
(2008)
RNA
, vol.14
, pp. 404-409
-
-
Abaza, I.1
Gebauer, F.2
-
5
-
-
75149196287
-
The mechanism of eukaryotic translation initiation and principles of its regulation
-
Jackson R.J., Hellen C.U., Pestova T.V. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 2010, 11:113-127.
-
(2010)
Nat Rev Mol Cell Biol
, vol.11
, pp. 113-127
-
-
Jackson, R.J.1
Hellen, C.U.2
Pestova, T.V.3
-
6
-
-
8844274816
-
Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation
-
Barnard D.C., Ryan K., Manley J.L., Richter J.D. Symplekin and xGLD-2 are required for CPEB-mediated cytoplasmic polyadenylation. Cell 2004, 119:641-651.
-
(2004)
Cell
, vol.119
, pp. 641-651
-
-
Barnard, D.C.1
Ryan, K.2
Manley, J.L.3
Richter, J.D.4
-
7
-
-
33749662940
-
Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation
-
Kim J.H., Richter J.D. Opposing polymerase-deadenylase activities regulate cytoplasmic polyadenylation. Mol Cell 2006, 24:173-183.
-
(2006)
Mol Cell
, vol.24
, pp. 173-183
-
-
Kim, J.H.1
Richter, J.D.2
-
8
-
-
0033634850
-
Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex
-
Mendez R., Murthy K.G., Ryan K., Manley J.L., Richter J.D. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol Cell 2000, 6:1253-1259.
-
(2000)
Mol Cell
, vol.6
, pp. 1253-1259
-
-
Mendez, R.1
Murthy, K.G.2
Ryan, K.3
Manley, J.L.4
Richter, J.D.5
-
9
-
-
0033394199
-
Maskin is a CPEB-associated factor that transiently interacts with elF-4E
-
Stebbins-Boaz B., Cao Q., de Moor C.H., Mendez R., Richter J.D. Maskin is a CPEB-associated factor that transiently interacts with elF-4E. Mol Cell 1999, 4:1017-1027.
-
(1999)
Mol Cell
, vol.4
, pp. 1017-1027
-
-
Stebbins-Boaz, B.1
Cao, Q.2
de Moor, C.H.3
Mendez, R.4
Richter, J.D.5
-
10
-
-
0034161254
-
Cap-dependent deadenylation of mRNA
-
Dehlin E., Wormington M., Korner C.G., Wahle E. Cap-dependent deadenylation of mRNA. EMBO J 2000, 19:1079-1086.
-
(2000)
EMBO J
, vol.19
, pp. 1079-1086
-
-
Dehlin, E.1
Wormington, M.2
Korner, C.G.3
Wahle, E.4
-
11
-
-
38049134877
-
CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes
-
Minshall N., Reiter M.H., Weil D., Standart N. CPEB interacts with an ovary-specific eIF4E and 4E-T in early Xenopus oocytes. J Biol Chem 2007, 282:37389-37401.
-
(2007)
J Biol Chem
, vol.282
, pp. 37389-37401
-
-
Minshall, N.1
Reiter, M.H.2
Weil, D.3
Standart, N.4
-
12
-
-
18844397041
-
A new paradigm for translational control: inhibition via 5'-3' mRNA tethering by Bicoid and the eIF4E cognate 4EHP
-
Cho P.F., Poulin F., Cho-Park Y.A., Cho-Park I.B., Chicoine J.D., Lasko P., Sonenberg N. A new paradigm for translational control: inhibition via 5'-3' mRNA tethering by Bicoid and the eIF4E cognate 4EHP. Cell 2005, 121:411-423.
-
(2005)
Cell
, vol.121
, pp. 411-423
-
-
Cho, P.F.1
Poulin, F.2
Cho-Park, Y.A.3
Cho-Park, I.B.4
Chicoine, J.D.5
Lasko, P.6
Sonenberg, N.7
-
13
-
-
22244445521
-
Vertebrate GLD2 poly(A) polymerases in the germline and the brain
-
Rouhana L., Wang L., Buter N., Kwak J.E., Schiltz C.A., Gonzalez T., Kelley A.E., Landry C.F., Wickens M. Vertebrate GLD2 poly(A) polymerases in the germline and the brain. RNA 2005, 11:1117-1130.
-
(2005)
RNA
, vol.11
, pp. 1117-1130
-
-
Rouhana, L.1
Wang, L.2
Buter, N.3
Kwak, J.E.4
Schiltz, C.A.5
Gonzalez, T.6
Kelley, A.E.7
Landry, C.F.8
Wickens, M.9
-
14
-
-
78951490357
-
Biochemical characterization of Pumilio1 and Pumilio2 in Xenopus oocytes
-
Ota R., Kotani T., Yamashita M. Biochemical characterization of Pumilio1 and Pumilio2 in Xenopus oocytes. J Biol Chem 2011, 286:2853-2863.
-
(2011)
J Biol Chem
, vol.286
, pp. 2853-2863
-
-
Ota, R.1
Kotani, T.2
Yamashita, M.3
-
15
-
-
79960922805
-
Roles of Puf proteins in mRNA degradation and translation
-
doi:10.1002/wrna.69
-
Melanie A., Miller W.M.O. Roles of Puf proteins in mRNA degradation and translation. WIREs RNA 2010, doi:10.1002/wrna.69.
-
(2010)
WIREs RNA
-
-
Melanie, A.1
Miller, W.M.O.2
-
16
-
-
0042261934
-
Involvement of Xenopus Pumilio in the translational regulation that is specific to cyclin B1 mRNA during oocyte maturation
-
Nakahata S., Kotani T., Mita K., Kawasaki T., Katsu Y., Nagahama Y., Yamashita M. Involvement of Xenopus Pumilio in the translational regulation that is specific to cyclin B1 mRNA during oocyte maturation. Mech Dev 2003, 120:865-880.
-
(2003)
Mech Dev
, vol.120
, pp. 865-880
-
-
Nakahata, S.1
Kotani, T.2
Mita, K.3
Kawasaki, T.4
Katsu, Y.5
Nagahama, Y.6
Yamashita, M.7
-
17
-
-
38849190013
-
A combinatorial code for CPE-mediated translational control
-
Pique M., Lopez J.M., Foissac S., Guigo R., Mendez R. A combinatorial code for CPE-mediated translational control. Cell 2008, 132:434-448.
-
(2008)
Cell
, vol.132
, pp. 434-448
-
-
Pique, M.1
Lopez, J.M.2
Foissac, S.3
Guigo, R.4
Mendez, R.5
-
18
-
-
33745545011
-
Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation
-
Charlesworth A., Wilczynska A., Thampi P., Cox L.L., Macnicol A.M. Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation. EMBO J 2006, 25:2792-2801.
-
(2006)
EMBO J
, vol.25
, pp. 2792-2801
-
-
Charlesworth, A.1
Wilczynska, A.2
Thampi, P.3
Cox, L.L.4
Macnicol, A.M.5
-
19
-
-
75049083859
-
Enforcing temporal control of maternal mRNA translation during oocyte cell-cycle progression
-
Arumugam K., Wang Y., Hardy L.L., Macnicol M.C., Macnicol A.M. Enforcing temporal control of maternal mRNA translation during oocyte cell-cycle progression. EMBO J 2010, 29:387-397.
-
(2010)
EMBO J
, vol.29
, pp. 387-397
-
-
Arumugam, K.1
Wang, Y.2
Hardy, L.L.3
Macnicol, M.C.4
Macnicol, A.M.5
-
20
-
-
2342437314
-
Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes
-
Charlesworth A., Cox L.L., Macnicol A.M. Cytoplasmic polyadenylation element (CPE)- and CPE-binding protein (CPEB)-independent mechanisms regulate early class maternal mRNA translational activation in Xenopus oocytes. J Biol Chem 2004, 279:17650-17659.
-
(2004)
J Biol Chem
, vol.279
, pp. 17650-17659
-
-
Charlesworth, A.1
Cox, L.L.2
Macnicol, A.M.3
-
21
-
-
75149162081
-
A novel, noncanonical mechanism of cytoplasmic polyadenylation operates in Drosophila embryogenesis
-
Coll O., Villalba A., Bussotti G., Notredame C., Gebauer F. A novel, noncanonical mechanism of cytoplasmic polyadenylation operates in Drosophila embryogenesis. Genes Dev 2010, 24:129-134.
-
(2010)
Genes Dev
, vol.24
, pp. 129-134
-
-
Coll, O.1
Villalba, A.2
Bussotti, G.3
Notredame, C.4
Gebauer, F.5
-
22
-
-
0037136552
-
A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans
-
Wang L., Eckmann C.R., Kadyk L.C., Wickens M., Kimble J. A regulatory cytoplasmic poly(A) polymerase in Caenorhabditis elegans. Nature 2002, 419:312-316.
-
(2002)
Nature
, vol.419
, pp. 312-316
-
-
Wang, L.1
Eckmann, C.R.2
Kadyk, L.C.3
Wickens, M.4
Kimble, J.5
-
23
-
-
67650340625
-
FBF and its dual control of gld-1 expression in the Caenorhabditis elegans germline
-
Suh N., Crittenden S.L., Goldstrohm A., Hook B., Thompson B., Wickens M., Kimble J. FBF and its dual control of gld-1 expression in the Caenorhabditis elegans germline. Genetics 2009, 181:1249-1260.
-
(2009)
Genetics
, vol.181
, pp. 1249-1260
-
-
Suh, N.1
Crittenden, S.L.2
Goldstrohm, A.3
Hook, B.4
Thompson, B.5
Wickens, M.6
Kimble, J.7
-
24
-
-
65549130875
-
Antagonism between GLD-2 binding partners controls gamete sex
-
Kim K.W., Nykamp K., Suh N., Bachorik J.L., Wang L., Kimble J. Antagonism between GLD-2 binding partners controls gamete sex. Dev Cell 2009, 16:723-733.
-
(2009)
Dev Cell
, vol.16
, pp. 723-733
-
-
Kim, K.W.1
Nykamp, K.2
Suh, N.3
Bachorik, J.L.4
Wang, L.5
Kimble, J.6
-
25
-
-
64349118428
-
Two conserved regulatory cytoplasmic poly(A) polymerases, GLD-4 and GLD-2, regulate meiotic progression in C. elegans
-
Schmid M., Kuchler B., Eckmann C.R. Two conserved regulatory cytoplasmic poly(A) polymerases, GLD-4 and GLD-2, regulate meiotic progression in C. elegans. Genes Dev 2009, 23:824-836.
-
(2009)
Genes Dev
, vol.23
, pp. 824-836
-
-
Schmid, M.1
Kuchler, B.2
Eckmann, C.R.3
-
26
-
-
46749084324
-
PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila
-
Benoit P., Papin C., Kwak J.E., Wickens M., Simonelig M. PAP- and GLD-2-type poly(A) polymerases are required sequentially in cytoplasmic polyadenylation and oogenesis in Drosophila. Development 2008, 135:1969-1979.
-
(2008)
Development
, vol.135
, pp. 1969-1979
-
-
Benoit, P.1
Papin, C.2
Kwak, J.E.3
Wickens, M.4
Simonelig, M.5
-
27
-
-
77956115326
-
Developmental timing of mRNA translation-integration of distinct regulatory elements
-
Macnicol M.C., Macnicol A.M. Developmental timing of mRNA translation-integration of distinct regulatory elements. Mol Reprod Dev 2010, 77:662-669.
-
(2010)
Mol Reprod Dev
, vol.77
, pp. 662-669
-
-
Macnicol, M.C.1
Macnicol, A.M.2
-
28
-
-
77954955355
-
Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4
-
Igea A., Mendez R. Meiosis requires a translational positive loop where CPEB1 ensues its replacement by CPEB4. EMBO J 2010, 29:2182-2193.
-
(2010)
EMBO J
, vol.29
, pp. 2182-2193
-
-
Igea, A.1
Mendez, R.2
-
29
-
-
42549107372
-
A deadenylation negative feedback mechanism governs meiotic metaphase arrest
-
Belloc E., Mendez R. A deadenylation negative feedback mechanism governs meiotic metaphase arrest. Nature 2008, 452:1017-1021.
-
(2008)
Nature
, vol.452
, pp. 1017-1021
-
-
Belloc, E.1
Mendez, R.2
-
30
-
-
0346186101
-
A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in aplysia
-
Si K., Giustetto M., Etkin A., Hsu R., Janisiewicz A.M., Miniaci M.C., Kim J.H., Zhu H., Kandel E.R. A neuronal isoform of CPEB regulates local protein synthesis and stabilizes synapse-specific long-term facilitation in aplysia. Cell 2003, 115:893-904.
-
(2003)
Cell
, vol.115
, pp. 893-904
-
-
Si, K.1
Giustetto, M.2
Etkin, A.3
Hsu, R.4
Janisiewicz, A.M.5
Miniaci, M.C.6
Kim, J.H.7
Zhu, H.8
Kandel, E.R.9
-
31
-
-
52249104915
-
Sustained CPEB-dependent local protein synthesis is required to stabilize synaptic growth for persistence of long-term facilitation in Aplysia
-
Miniaci M.C., Kim J.H., Puthanveettil S.V., Si K., Zhu H., Kandel E.R., Bailey C.H. Sustained CPEB-dependent local protein synthesis is required to stabilize synaptic growth for persistence of long-term facilitation in Aplysia. Neuron 2008, 59:1024-1036.
-
(2008)
Neuron
, vol.59
, pp. 1024-1036
-
-
Miniaci, M.C.1
Kim, J.H.2
Puthanveettil, S.V.3
Si, K.4
Zhu, H.5
Kandel, E.R.6
Bailey, C.H.7
-
32
-
-
36448958766
-
Function of the Drosophila CPEB protein Orb2 in long-term courtship memory
-
Keleman K., Kruttner S., Alenius M., Dickson B.J. Function of the Drosophila CPEB protein Orb2 in long-term courtship memory. Nat Neurosci 2007, 10:1587-1593.
-
(2007)
Nat Neurosci
, vol.10
, pp. 1587-1593
-
-
Keleman, K.1
Kruttner, S.2
Alenius, M.3
Dickson, B.J.4
-
33
-
-
55749109386
-
GLD2 poly(A) polymerase is required for long-term memory
-
Kwak J.E., Drier E., Barbee S.A., Ramaswami M., Yin J.C., Wickens M. GLD2 poly(A) polymerase is required for long-term memory. Proc Natl Acad Sci U S A 2008, 105:14644-14649.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 14644-14649
-
-
Kwak, J.E.1
Drier, E.2
Barbee, S.A.3
Ramaswami, M.4
Yin, J.C.5
Wickens, M.6
-
34
-
-
0032215079
-
CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses
-
Wu L., Wells D., Tay J., Mendis D., Abbott M.A., Barnitt A., Quinlan E., Heynen A., Fallon J.R., Richter J.D. CPEB-mediated cytoplasmic polyadenylation and the regulation of experience-dependent translation of alpha-CaMKII mRNA at synapses. Neuron 1998, 21:1129-1139.
-
(1998)
Neuron
, vol.21
, pp. 1129-1139
-
-
Wu, L.1
Wells, D.2
Tay, J.3
Mendis, D.4
Abbott, M.A.5
Barnitt, A.6
Quinlan, E.7
Heynen, A.8
Fallon, J.R.9
Richter, J.D.10
-
35
-
-
0036565678
-
N-methyl-d-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses
-
Huang Y.S., Jung M.Y., Sarkissian M., Richter J.D. N-methyl-d-aspartate receptor signaling results in Aurora kinase-catalyzed CPEB phosphorylation and alpha CaMKII mRNA polyadenylation at synapses. EMBO J 2002, 21:2139-2148.
-
(2002)
EMBO J
, vol.21
, pp. 2139-2148
-
-
Huang, Y.S.1
Jung, M.Y.2
Sarkissian, M.3
Richter, J.D.4
-
36
-
-
0037338218
-
Facilitation of dendritic mRNA transport by CPEB
-
Huang Y.S., Carson J.H., Barbarese E., Richter J.D. Facilitation of dendritic mRNA transport by CPEB. Genes Dev 2003, 17:638-653.
-
(2003)
Genes Dev
, vol.17
, pp. 638-653
-
-
Huang, Y.S.1
Carson, J.H.2
Barbarese, E.3
Richter, J.D.4
-
37
-
-
0348077417
-
A neuronal isoform of the aplysia CPEB has prion-like properties
-
Si K., Lindquist S., Kandel E.R. A neuronal isoform of the aplysia CPEB has prion-like properties. Cell 2003, 115:879-891.
-
(2003)
Cell
, vol.115
, pp. 879-891
-
-
Si, K.1
Lindquist, S.2
Kandel, E.R.3
-
38
-
-
79952578947
-
Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB)
-
Heinrich S.U., Lindquist S. Protein-only mechanism induces self-perpetuating changes in the activity of neuronal Aplysia cytoplasmic polyadenylation element binding protein (CPEB). Proc Natl Acad Sci U S A 2011, 108:2999-3004.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 2999-3004
-
-
Heinrich, S.U.1
Lindquist, S.2
-
39
-
-
75749134925
-
Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation
-
Si K., Choi Y.B., White-Grindley E., Majumdar A., Kandel E.R. Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 2010, 140:421-435.
-
(2010)
Cell
, vol.140
, pp. 421-435
-
-
Si, K.1
Choi, Y.B.2
White-Grindley, E.3
Majumdar, A.4
Kandel, E.R.5
-
40
-
-
0037123787
-
Translational control of the embryonic cell cycle
-
Groisman I., Jung M.Y., Sarkissian M., Cao Q., Richter J.D. Translational control of the embryonic cell cycle. Cell 2002, 109:473-483.
-
(2002)
Cell
, vol.109
, pp. 473-483
-
-
Groisman, I.1
Jung, M.Y.2
Sarkissian, M.3
Cao, Q.4
Richter, J.D.5
-
41
-
-
33845351450
-
CDK1 and calcineurin regulate Maskin association with eIF4E and translational control of cell cycle progression
-
Cao Q., Kim J.H., Richter J.D. CDK1 and calcineurin regulate Maskin association with eIF4E and translational control of cell cycle progression. Nat Struct Mol Biol 2006, 13:1128-1134.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 1128-1134
-
-
Cao, Q.1
Kim, J.H.2
Richter, J.D.3
-
42
-
-
77951978351
-
Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control
-
Novoa I., Gallego J., Ferreira P.G., Mendez R. Mitotic cell-cycle progression is regulated by CPEB1 and CPEB4-dependent translational control. Nat Cell Biol 2010, 12:447-456.
-
(2010)
Nat Cell Biol
, vol.12
, pp. 447-456
-
-
Novoa, I.1
Gallego, J.2
Ferreira, P.G.3
Mendez, R.4
-
43
-
-
46449139041
-
Spindle-localized CPE-mediated translation controls meiotic chromosome segregation
-
Eliscovich C., Peset I., Vernos I., Mendez R. Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat Cell Biol 2008, 10:858-865.
-
(2008)
Nat Cell Biol
, vol.10
, pp. 858-865
-
-
Eliscovich, C.1
Peset, I.2
Vernos, I.3
Mendez, R.4
-
44
-
-
58049213723
-
CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation
-
Burns D.M., Richter J.D. CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. Genes Dev 2008, 22:3449-3460.
-
(2008)
Genes Dev
, vol.22
, pp. 3449-3460
-
-
Burns, D.M.1
Richter, J.D.2
-
45
-
-
75149173478
-
The nuclear experience of CPEB: implications for RNA processing and translational control
-
Lin C.L., Evans V., Shen S., Xing Y., Richter J.D. The nuclear experience of CPEB: implications for RNA processing and translational control. RNA 2010, 16:338-348.
-
(2010)
RNA
, vol.16
, pp. 338-348
-
-
Lin, C.L.1
Evans, V.2
Shen, S.3
Xing, Y.4
Richter, J.D.5
|