메뉴 건너뛰기




Volumn 47, Issue 7, 2011, Pages

Corruption of parameter behavior and regionalization by model and forcing data errors: A Bayesian example using the SNOW17 model

Author keywords

[No Author keywords available]

Indexed keywords

ABLATION MODEL; AIR TEMPERATURE; CALIBRATION DATA; DATA ERRORS; DIFFERENTIAL EVOLUTION; ERROR SOURCES; HYDROCLIMATIC; HYDROLOGIC MODELING; LIKELIHOOD FUNCTIONS; MEASUREMENT UNCERTAINTY; MODEL PARAMETERS; MULTIPLE LINEAR REGRESSION MODELS; NATIONAL WEATHER SERVICES; OBSERVATIONAL DATA; PARAMETER REGIONALIZATION; SITE CHARACTERISTICS; SNOW ACCUMULATION; SNOW WATER EQUIVALENT; SOURCES OF UNCERTAINTY; STRUCTURAL UNCERTAINTY;

EID: 79960909525     PISSN: 00431397     EISSN: None     Source Type: Journal    
DOI: 10.1029/2010WR009753     Document Type: Article
Times cited : (25)

References (86)
  • 1
    • 33847624519 scopus 로고    scopus 로고
    • An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction
    • DOI 10.1029/2005WR004745
    • Ajami, N. K., Q. Duan, and S. Sorooshian (2007), An integrated hydrologic Bayesian multimodel combination framework: Confronting input, parameter, and model structural uncertainty in hydrologic prediction, Water Resour. Res., 43, W01403, doi:10.1029/2005WR004745. (Pubitemid 46364281)
    • (2007) Water Resources Research , vol.43 , Issue.1
    • Ajami, N.K.1    Duan, Q.2    Sorooshian, S.3
  • 2
    • 0003403143 scopus 로고
    • National Weather Service river forecast system- Snow accumulation and ablation model
    • NOAA Silver Spring, Md
    • Anderson, E. A. (1973), National Weather Service river forecast system- Snow accumulation and ablation model, Tech. Memo NWS HYDRO-17, NOAA, Silver Spring, Md.
    • (1973) Tech. Memo NWS HYDRO-17
    • Anderson, E.A.1
  • 3
    • 7044241708 scopus 로고    scopus 로고
    • Calibration of conceptual models for use in river forecasting
    • Hydro. Lab., Silver Spring, Md
    • Anderson, E. A. (2002), Calibration of conceptual models for use in river forecasting, NOAA Tech. Rep. NWS 45, Hydro. Lab., Silver Spring, Md.
    • (2002) NOAA Tech. Rep. NWS , vol.45
    • Anderson, E.A.1
  • 4
    • 33645875289 scopus 로고    scopus 로고
    • Assimilating remotely sensed snow observations into a macroscale hydrology model
    • Andreadis, K. M., and D. P. Lettenmaier (2006), Assimilating remotely sensed snow observations into a macroscale hydrology model, Adv. Water Resour., 29, 872-886.
    • (2006) Adv. Water Resour. , vol.29 , pp. 872-886
    • Andreadis, K.M.1    Lettenmaier, D.P.2
  • 6
    • 47049086970 scopus 로고    scopus 로고
    • Regionalisation of hydrological model parameters under parameter uncertainty: A case study involving TOPMODEL and basins across the globe
    • Bastola, S., H. Ishidaira, and K. Takeuchi (2008), Regionalisation of hydrological model parameters under parameter uncertainty: A case study involving TOPMODEL and basins across the globe, J. Hydrol., 357, 188-206.
    • (2008) J. Hydrol. , vol.357 , pp. 188-206
    • Bastola, S.1    Ishidaira, H.2    Takeuchi, K.3
  • 7
    • 0023523402 scopus 로고
    • Water quality modeling: A review of the analysis of uncertainty
    • Beck, M. B. (1987), Water quality modeling: A review of the analysis of uncertainty, Water Resour. Res., 23, 1393-1442, doi:10.1029/WR023i 008p01393. (Pubitemid 17634286)
    • (1987) Water Resources Research , vol.23 , Issue.8 , pp. 1393-1442
    • Beck, M.B.1
  • 8
    • 33644526990 scopus 로고    scopus 로고
    • A manifesto for the equifinality thesis
    • Beven, K. (2006), A manifesto for the equifinality thesis, J. Hydrol., 320, 18-36.
    • (2006) J. Hydrol. , vol.320 , pp. 18-36
    • Beven, K.1
  • 9
    • 0027009437 scopus 로고
    • Future of distributed models: Model calibration and uncertainty prediction
    • Beven, K., and A. Binley (1992), Future of distributed models: Model calibration and uncertainty prediction, Hydrol. Processes, 6, 279-298.
    • (1992) Hydrol. Processes , vol.6 , pp. 279-298
    • Beven, K.1    Binley, A.2
  • 10
    • 72149100707 scopus 로고    scopus 로고
    • Regionalization as a learning process
    • doi:10.1029/2008WR007359
    • Buytaert, W., and K. Beven (2009), Regionalization as a learning process, Water Resour. Res., 45, W11419, doi:10.1029/2008WR007359.
    • (2009) Water Resour. Res. , vol.45
    • Buytaert, W.1    Beven, K.2
  • 11
    • 0034987503 scopus 로고    scopus 로고
    • Regionalization of rainfall-runoff model parameters using Markov Chain Monte Carlo samples
    • DOI 10.1029/2000WR900349
    • Campbell, E. P., and B. C. Bates (2001), Regionalization of rainfall-runoff model parameters using Markov chain Monte Carlo samples, Water Resour. Res., 37, 731-739, doi:10.1029/2000WR900349. (Pubitemid 32526071)
    • (2001) Water Resources Research , vol.37 , Issue.3 , pp. 731-739
    • Campbell, E.P.1    Bates, B.C.2
  • 12
    • 0030425351 scopus 로고    scopus 로고
    • Interannual climate variability and snowpack in the western United States
    • Cayan, D. R. (1996), Interannual climate variability and snowpack in the western United States, J. Clim., 9, 928-948.
    • (1996) J. Clim. , vol.9 , pp. 928-948
    • Cayan, D.R.1
  • 14
    • 77958485884 scopus 로고    scopus 로고
    • Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes
    • doi:10.1029/ 2009WR008894
    • Clark, M. P., and D. Kavetski (2010), Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes, Water Resour. Res., 46, W10510, doi:10.1029/ 2009WR008894.
    • (2010) Water Resour. Res. , vol.46
    • Clark, M.P.1    Kavetski, D.2
  • 15
    • 33645549317 scopus 로고    scopus 로고
    • Probabilistic quantitative precipitation estimation in complex terrain
    • Clark, M. P., and A. G. Slater (2006), Probabilistic quantitative precipitation estimation in complex terrain, J. Hydrometeorol., 7, 3-22.
    • (2006) J. Hydrometeorol. , vol.7 , pp. 3-22
    • Clark, M.P.1    Slater, A.G.2
  • 16
    • 51349141022 scopus 로고    scopus 로고
    • Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models
    • doi:10.1029/2007WR006735
    • Clark, M. P., A. G. Slater,D. E.Rupp, R.A.Woods, J.A. Vrugt, H.V.Gupta, T. Wagener, and L. E. Hay (2008), Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models, Water Resour. Res., 44, W00B02, doi:10.1029/ 2007WR006735.
    • (2008) Water Resour. Res. , vol.44
    • Clark, M.P.1    Slater, A.G.2    Rupp, D.E.3    Woods, R.A.4    Vrugt, J.A.5    Gupta, H.V.6    Wagener, T.7    Hay, L.E.8
  • 17
    • 0141444038 scopus 로고
    • SNOTEL: Monitoring climatic factors to predict water supplies
    • Crook, A. G. (1977), SNOTEL: Monitoring climatic factors to predict water supplies, J. Soil Water Conserv., 32, 294-295.
    • (1977) J. Soil Water Conserv. , vol.32 , pp. 294-295
    • Crook, A.G.1
  • 19
    • 0026445234 scopus 로고
    • Effective and efficient global optimization for conceptual rainfall-runoff models
    • doi:10.1029/91WR02985
    • Duan, Q., S. Sorooshian, and V. Gupta (1992), Effective and efficient global optimization for conceptual rainfall-runoff models, Water Resour. Res., 28, 1015-1031, doi:10.1029/91WR02985.
    • (1992) Water Resour. Res. , vol.28 , pp. 1015-1031
    • Duan, Q.1    Sorooshian, S.2    Gupta, V.3
  • 20
    • 33847274843 scopus 로고    scopus 로고
    • Multi-model ensemble hydrologic prediction using Bayesian model averaging
    • DOI 10.1016/j.advwatres.2006.11.014, PII S030917080600220X
    • Duan, Q., N. K. Ajami, X. Gao, and S. Sorooshian (2007), Multi-model ensemble hydrologic prediction using Bayesian model averaging, Adv. Water Resour., 30, 1371-1386. (Pubitemid 46323445)
    • (2007) Advances in Water Resources , vol.30 , Issue.5 , pp. 1371-1386
    • Duan, Q.1    Ajami, N.K.2    Gao, X.3    Sorooshian, S.4
  • 21
    • 33746082855 scopus 로고    scopus 로고
    • Feasibility test of multifrequency radiometric data assimilation to estimate snow water equivalent
    • DOI 10.1175/JHM502.1
    • Durand, M., and S. A. Margulis (2006), Feasibility test of multifrequency radiometric data assimilation to estimate snow water equivalent, J. Hydrometeorol., 7, 443-457. (Pubitemid 44070414)
    • (2006) Journal of Hydrometeorology , vol.7 , Issue.3 , pp. 443-457
    • Durand, M.1    Margulis, S.A.2
  • 22
    • 41649107868 scopus 로고    scopus 로고
    • Effects of uncertainty magnitude and accuracy on assimilation of multiscale measurements for snowpack characterization
    • doi:10.1029/2007JD008662
    • Durand, M., and S. A.Margulis (2008), Effects of uncertainty magnitude and accuracy on assimilation of multiscale measurements for snowpack characterization, J. Geophys. Res., 113, D02105, doi:10.1029/2007JD008662.
    • (2008) J. Geophys. Res. , vol.113
    • Durand, M.1    Margulis, S.A.2
  • 23
    • 1542442239 scopus 로고    scopus 로고
    • Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data
    • doi:10.1029/2002WR001512
    • Fassnacht, S. R., K. A. Dressler, and R. C. Bales (2003), Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data, Water Resour. Res., 39(8), 1208, doi:10.1029/2002WR001512.
    • (2003) Water Resour. Res. , vol.39 , Issue.8 , pp. 1208
    • Fassnacht, S.R.1    Dressler, K.A.2    Bales, R.C.3
  • 25
    • 51249090107 scopus 로고    scopus 로고
    • Operational snow modeling: Addressing the challenges of an energy balance model for national weather service forecasts
    • Franz, K. J., T. S. Hogue, and S. Sorooshian (2008), Operational snow modeling: Addressing the challenges of an energy balance model for National Weather Service forecasts, J. Hydrol., 360, 48-66.
    • (2008) J. Hydrol. , vol.360 , pp. 48-66
    • Franz, K.J.1    Hogue, T.S.2    Sorooshian, S.3
  • 26
    • 77955013276 scopus 로고    scopus 로고
    • Addressing snow model uncertainty for hydrologic prediction
    • Franz, K. J., P. Butcher, and N. K. Ajami (2010), Addressing snow model uncertainty for hydrologic prediction, Adv. Water Resour., 33, 820-832.
    • (2010) Adv. Water Resour. , vol.33 , pp. 820-832
    • Franz, K.J.1    Butcher, P.2    Ajami, N.K.3
  • 27
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., and D. B. Rubin (1992), Inference from iterative simulation using multiple sequences, Stat. Sci., 7, 457-472.
    • (1992) Stat. Sci. , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 28
    • 72149095854 scopus 로고    scopus 로고
    • Generic error model for calibration and uncertainty estimation of hydrological models
    • doi:10.1029/2007WR006691
    • Gotzinger, J., and A. Bardossy (2008), Generic error model for calibration and uncertainty estimation of hydrological models, Water Resour. Res., 44, W00B07, doi:10.1029/2007WR006691.
    • (2008) Water Resour. Res. , vol.44
    • Gotzinger, J.1    Bardossy, A.2
  • 29
    • 26444548489 scopus 로고    scopus 로고
    • Model calibration and uncertainty estimation
    • edited by M. G. Anderson and J. J. McConnell, John Wiley, New York
    • Gupta, H. V., K. J. Beven, and T. Wagener (2006), Model calibration and uncertainty estimation, in Encyclopedia of Hydrologic Sciences, edited by, M. G. Anderson and J. J. McConnell, pp. 2015-2031, John Wiley, New York.
    • (2006) Encyclopedia of Hydrologic Sciences , pp. 2015-2031
    • Gupta, H.V.1    Beven, K.J.2    Wagener, T.3
  • 31
    • 78650170040 scopus 로고    scopus 로고
    • Characterizing parameter sensitivity and uncertainty for a snow model across hydroclimatic regimes
    • He, M., T. S. Hogue, K. J. Franz, S. A. Margulis, and J. A. Vrugt (2011), Characterizing parameter sensitivity and uncertainty for a snow model across hydroclimatic regimes, Adv. Water Resour., 34, 114-127.
    • (2011) Adv. Water Resour. , vol.34 , pp. 114-127
    • He, M.1    Hogue, T.S.2    Franz, K.J.3    Margulis, S.A.4    Vrugt, J.A.5
  • 32
    • 32044449423 scopus 로고    scopus 로고
    • Regionalisation of the parameters of a hydrological model: Comparison of linear regression models with artificial neural nets
    • DOI 10.1016/j.jhydrol.2005.07.030, PII S0022169405003641
    • Heuvelmans, G., B. Muys, and J. Feyen (2006), Regionalisation of the parameters of a hydrological model: Comparison of linear regression models with artificial neural nets, J. Hydrol., 319, 245-265. (Pubitemid 43199901)
    • (2006) Journal of Hydrology , vol.319 , Issue.1-4 , pp. 245-265
    • Heuvelmans, G.1    Muys, B.2    Feyen, J.3
  • 33
    • 0034348590 scopus 로고    scopus 로고
    • A multistep automatic calibration scheme for river forecasting models
    • DOI 10.1175/1525-7541(2000)001<0524:AMACSF>2.0.CO;2
    • Hogue, T. S., S. Sorooshian, H. Gupta, A. Holz, and D. Braatz (2000), A multistep automatic calibration scheme for river forecasting models, J. Hydrometeorol., 1, 524-542. (Pubitemid 33231479)
    • (2000) Journal of Hydrometeorology , vol.1 , Issue.6 , pp. 524-542
    • Hogue, T.S.1    Sorooshian, S.2    Gupta, H.3    Holz, A.4    Braatz, D.5
  • 34
    • 33749410854 scopus 로고    scopus 로고
    • Evaluating model performance and parameter behavior for varying levels of land surface model complexity
    • DOI 10.1029/2005WR004440
    • Hogue, T. S., L. A. Bastidas, H. V. Gupta, and S. Sorooshian (2006a), Evaluating model performance and parameter behavior for varying levels of land surface model complexity, Water Resour. Res., 42, W08430, doi:10.1029/ 2005WR004440. (Pubitemid 44506750)
    • (2006) Water Resources Research , vol.42 , Issue.8
    • Hogue, T.S.1    Bastidas, L.A.2    Gupta, H.V.3    Sorooshian, S.4
  • 35
    • 33644508929 scopus 로고    scopus 로고
    • A 'user-friendly' approach to parameter estimation in hydrologic models
    • Hogue, T. S., H. Gupta, and S. Sorooshian (2006b), A 'user-friendly' approach to parameter estimation in hydrologic models, J. Hydrol., 320, 202-217.
    • (2006) J. Hydrol. , vol.320 , pp. 202-217
    • Hogue, T.S.1    Gupta, H.2    Sorooshian, S.3
  • 36
    • 72149132049 scopus 로고    scopus 로고
    • Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion
    • Huisman, J. A., J. Rings, J. A. Vrugt, J. Sorg, and H. Vereecken (2010), Hydraulic properties of a model dike from coupled Bayesian and multi-criteria hydrogeophysical inversion, J. Hydrol., 380, 62-73.
    • (2010) J. Hydrol. , vol.380 , pp. 62-73
    • Huisman, J.A.1    Rings, J.2    Vrugt, J.A.3    Sorg, J.4    Vereecken, H.5
  • 38
    • 77955501409 scopus 로고    scopus 로고
    • Observed climate-snowpack relationships in California and their implications for the future
    • Kapnick, S., and A. Hall (2010), Observed climate-snowpack relationships in California and their implications for the future, J. Clim., 23, 3446-3456.
    • (2010) J. Clim. , vol.23 , pp. 3446-3456
    • Kapnick, S.1    Hall, A.2
  • 39
    • 77958463981 scopus 로고    scopus 로고
    • Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction
    • doi:10.1029/2009WR008896
    • Kavetski, D., and M. P. Clark (2010), Ancient numerical daemons of conceptual hydrological modeling: 2. Impact of time stepping schemes on model analysis and prediction, Water Resour. Res., 46, W10511, doi:10.1029/ 2009WR008896.
    • (2010) Water Resour. Res. , vol.46
    • Kavetski, D.1    Clark, M.P.2
  • 40
    • 14944381637 scopus 로고    scopus 로고
    • Confronting input uncertainty in environmental modelling
    • edited by Q. Duan et al., AGU, Washington, D. C
    • Kavetski, D., S. W. Franks, and G. Kuczera (2002), Confronting input uncertainty in environmental modelling, in Calibration of Watershed Models, Water Sci. Appl. Ser., vol. 6, edited by Q. Duan et al., pp. 49-68, AGU, Washington, D. C.
    • (2002) Calibration of Watershed Models, Water Sci. Appl. Ser. , vol.6 , pp. 49-68
    • Kavetski, D.1    Franks, S.W.2    Kuczera, G.3
  • 41
    • 33646510313 scopus 로고    scopus 로고
    • Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory
    • doi:10.1029/2005WR004368
    • Kavetski, D., G. Kuczera, and S. W. Franks (2006), Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resour. Res., 42, W03407, doi:10.1029/2005WR004368.
    • (2006) Water Resour. Res. , vol.42
    • Kavetski, D.1    Kuczera, G.2    Franks, S.W.3
  • 42
    • 0019227947 scopus 로고
    • Real-time forecasting with a conceptual hydrologic model: 1. Analysis of uncertainty
    • doi:10.1029/WR016i006p01025
    • Kitanidis, P. K., and R. L. Bras (1980), Real-time forecasting with a conceptual hydrologic model: 1. Analysis of uncertainty, Water Resour. Res., 16, 1025-1033, doi:10.1029/WR016i006p01025.
    • (1980) Water Resour. Res. , vol.16 , pp. 1025-1033
    • Kitanidis, P.K.1    Bras, R.L.2
  • 43
    • 70349302015 scopus 로고    scopus 로고
    • On the development of regionalization relationships for lumped watershed models: The impact of ignoring subbasin scale variability
    • Kling, H., and H. Gupta (2009), On the development of regionalization relationships for lumped watershed models: The impact of ignoring subbasin scale variability, J. Hydrol., 373, 337-351.
    • (2009) J. Hydrol. , vol.373 , pp. 337-351
    • Kling, H.1    Gupta, H.2
  • 44
    • 0032214428 scopus 로고    scopus 로고
    • Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm
    • DOI 10.1016/S0022-1694(98)00198-X, PII S002216949800198X
    • Kuczera, G., and E. Parent (1998), Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm, J. Hydrol., 211, 69-85. (Pubitemid 29014557)
    • (1998) Journal of Hydrology , vol.211 , Issue.1-4 , pp. 69-85
    • Kuczera, G.1    Parent, E.2
  • 45
    • 33750474092 scopus 로고    scopus 로고
    • Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters
    • DOI 10.1016/j.jhydrol.2006.05.010, PII S0022169406002745
    • Kuczera, G., D. Kavetski, S. Franks, and M. Thyer (2006), Towards a Bayesian total error analysis of conceptual rainfall-runoff models: Characterising model error using storm-dependent parameters, J. Hydrol., 331, 161-177. (Pubitemid 44646456)
    • (2006) Journal of Hydrology , vol.331 , Issue.1-2 , pp. 161-177
    • Kuczera, G.1    Kavetski, D.2    Franks, S.3    Thyer, M.4
  • 46
    • 34548176313 scopus 로고    scopus 로고
    • Non-stationary regional flood frequency analysis at ungauged sites
    • DOI 10.1016/j.jhydrol.2007.06.021, PII S0022169407003824
    • Leclerc, M., and T. B. M. J. Ouarda (2007), Non-stationary regional flood frequency analysis at ungauged sites, J. Hydrol., 343, 254-265. (Pubitemid 47304443)
    • (2007) Journal of Hydrology , vol.343 , Issue.3-4 , pp. 254-265
    • Leclerc, M.1    Ouarda, T.B.M.J.2
  • 47
    • 36648998731 scopus 로고    scopus 로고
    • Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework
    • DOI 10.1029/2006WR005756
    • Liu, Y., and H. V. Gupta (2007), Uncertainty in hydrologic modeling: Toward an integrated data assimilation framework, Water Resour. Res., 43, W07401, doi:10.1029/2006WR005756. (Pubitemid 350194456)
    • (2007) Water Resources Research , vol.43 , Issue.7
    • Liu, Y.1    Gupta, H.V.2
  • 48
    • 0037001561 scopus 로고    scopus 로고
    • Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment
    • doi:10.1029/2001WR001114
    • Margulis, S. A., D. McLaughlin, D. Entekhabi, and S. Dunne (2002), Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment, Water Resour. Res., 38(12), 1299, doi:10.1029/2001WR001114.
    • (2002) Water Resour. Res. , vol.38 , Issue.12 , pp. 1299
    • Margulis, S.A.1    McLaughlin, D.2    Entekhabi, D.3    Dunne, S.4
  • 49
    • 1542320086 scopus 로고    scopus 로고
    • Regionalisation of catchment model parameters
    • DOI 10.1016/j.jhydrol.2003.09.028, PII S0022169403004013
    • Merz, R., and G. Bloschl (2004), Regionalisation of catchment model parameters, J. Hydrol., 287, 95-123. (Pubitemid 38300324)
    • (2004) Journal of Hydrology , vol.287 , Issue.1-4 , pp. 95-123
    • Merz, R.1    Bloschl, G.2
  • 50
    • 0030430796 scopus 로고    scopus 로고
    • Climatic controls and spatial variations of precipitation in the western United States
    • Mock, C. J. (1996), Climatic controls and spatial variations of precipitation in the western United States, J. Clim., 9, 1111-1125. (Pubitemid 27119142)
    • (1996) Journal of Climate , vol.9 , Issue.5 , pp. 1111-1125
    • Mock, C.J.1
  • 51
    • 29944442652 scopus 로고    scopus 로고
    • Scaling snow observations from the point to the grid element: Implications for observation network design
    • DOI 10.1029/2005WR004229, W11421
    • Molotch, N. P., and R. C. Bales (2005), Scaling snow observations from the point to the grid element: Implications for observation network design, Water Resour. Res., 41, W11421, doi:10.1029/2005WR004229. (Pubitemid 43041792)
    • (2005) Water Resources Research , vol.41 , Issue.11 , pp. 1-16
    • Molotch, N.P.1    Bales, R.C.2
  • 52
    • 33947533125 scopus 로고    scopus 로고
    • What do we mean by 'uncertainty'? The need for a consistent wording about uncertainty assessment in hydrology
    • DOI 10.1002/hyp.6623
    • Montanari, A. (2007), What do we mean by 'uncertainty'? The need for a consistent wording about uncertainty assessment in hydrology, Hydrol. Processes, 21, 841-845. (Pubitemid 46470747)
    • (2007) Hydrological Processes , vol.21 , Issue.6 , pp. 841-845
    • Montanari, A.1
  • 53
    • 0346783277 scopus 로고    scopus 로고
    • Trends in snow water equivalent in the Pacific Northwest and their climatic causes
    • doi:10.1029/2003GL017258
    • Mote, P. W. (2003), Trends in snow water equivalent in the Pacific Northwest and their climatic causes, Geophys. Res. Lett., 30(12), 1601, doi:10.1029/2003GL017258.
    • (2003) Geophys. Res. Lett. , vol.30 , Issue.12 , pp. 1601
    • Mote, P.W.1
  • 55
    • 18844381609 scopus 로고    scopus 로고
    • Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model
    • DOI 10.1016/j.jhydrol.2004.09.005, PII S002216940400424X
    • Muleta, M. K., and J. W. Nicklow (2005), Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model, J. Hydrol., 306, 127-145. (Pubitemid 40678746)
    • (2005) Journal of Hydrology , vol.306 , Issue.1-4 , pp. 127-145
    • Muleta, M.K.1    Nicklow, J.W.2
  • 57
    • 43049134812 scopus 로고    scopus 로고
    • Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments
    • DOI 10.1029/2007WR006240
    • Oudin, L., V. Andreassian, C. Perrin, C. Michel, and N. Le Moine (2008), Spatial proximity, physical similarity, regression and ungaged catchments: A comparison of regionalization approaches based on 913 French catchments, Water Resour. Res., 44, W03413, doi:10.1029/2007WR006240. (Pubitemid 351628543)
    • (2008) Water Resources Research , vol.44 , Issue.3
    • Oudin, L.1    Andreassian, V.2    Perrin, C.3    Michel, C.4    Le Moine, N.5
  • 58
    • 27644594471 scopus 로고    scopus 로고
    • A comparison of regionalisation methods for catchment model parameters
    • Parajka, J., R. Merz, and G. Bloschl (2005), A comparison of regionalisation methods for catchment model parameters, Hydrol. Earth Syst. Sci., 9, 157-171. (Pubitemid 41555703)
    • (2005) Hydrology and Earth System Sciences , vol.9 , Issue.3 , pp. 157-171
    • Parajka, J.1    Merz, R.2    Bloschl, G.3
  • 59
    • 77950177246 scopus 로고    scopus 로고
    • Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors
    • doi:10.1029/2009WR008328
    • Renard, B., D. Kavetski, G. Kuczera, M. Thyer, and S. W. Franks (2010), Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors, Water Resour. Res., 46, W05521, doi:10.1029/2009WR008328.
    • (2010) Water Resour. Res. , vol.46
    • Renard, B.1    Kavetski, D.2    Kuczera, G.3    Thyer, M.4    Franks, S.W.5
  • 60
    • 0004840681 scopus 로고
    • A view of maximum-likelihood estimation with large conceptual hydrologic models
    • Restrepo, P. J., and R. L. Bras (1985), A view of maximum-likelihood estimation with large conceptual hydrologic models, Appl. Math. Comput., 17, 375-403.
    • (1985) Appl. Math. Comput. , vol.17 , pp. 375-403
    • Restrepo, P.J.1    Bras, R.L.2
  • 61
    • 70249132985 scopus 로고    scopus 로고
    • Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter
    • Salamon, P., and L. Feyen (2009), Assessing parameter, precipitation, and predictive uncertainty in a distributed hydrological model using sequential data assimilation with the particle filter, J. Hydrol., 376, 428-442.
    • (2009) J. Hydrol. , vol.376 , pp. 428-442
    • Salamon, P.1    Feyen, L.2
  • 62
    • 78049432883 scopus 로고    scopus 로고
    • Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models
    • doi:10.1029/2009WR008648
    • Schoups, G., J. A. Vrugt, F. Fenicia, and N. C. van de Giesen (2010), Corruption of accuracy and efficiency of Markov chain Monte Carlo simulation by inaccurate numerical implementation of conceptual hydrologic models, Water Resour. Res., 46, W10530, doi:10.1029/2009WR008648.
    • (2010) Water Resour. Res. , vol.46
    • Schoups, G.1    Vrugt, J.A.2    Fenicia, F.3    Van De Giesen, N.C.4
  • 63
    • 33846793079 scopus 로고    scopus 로고
    • Recursion-based multiple changepoint detection in multiple linear regression and application to river streamflows
    • doi:10.1029/ 2006WR005021
    • Seidou, O., and T. B. M. J. Ouarda (2007), Recursion-based multiple changepoint detection in multiple linear regression and application to river streamflows, Water Resour. Res., 43, W07404, doi:10.1029/ 2006WR005021.
    • (2007) Water Resour. Res. , vol.43
    • Seidou, O.1    Ouarda, T.B.M.J.2
  • 64
    • 0033065541 scopus 로고    scopus 로고
    • Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data
    • DOI 10.1029/1999WR900090
    • Serreze, M. C., M. P. Clark, R. L. Armstrong, D. A. McGinnis, and R. S. Pulwarty (1999), Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data, Water Resour. Res., 35, 2145-2160, doi:10.1029/2000WR900307. (Pubitemid 29311646)
    • (1999) Water Resources Research , vol.35 , Issue.7 , pp. 2145-2160
    • Serreze, M.C.1    Clark, M.P.2    Armstrong, R.L.3    McGinnis, D.A.4    Pulwarty, R.S.5
  • 65
    • 0034993971 scopus 로고    scopus 로고
    • Characteristics of large snowfall events in the montane western United States as examined using snowpack telemetry (SNOTEL) data
    • DOI 10.1029/2000WR900307
    • Serreze, M. C., M. P. Clark, and A. Frei (2001), Characteristics of large snowfall events in the montane western United States as examined using snowpack telemetry (SNOTEL) data, Water Resour. Res., 37, 675-688, doi:10.1029/ 2000WR900307. (Pubitemid 32526066)
    • (2001) Water Resources Research , vol.37 , Issue.3 , pp. 675-688
    • Serreze, M.C.1    Clark, M.P.2    Frei, A.3
  • 66
    • 1242284619 scopus 로고    scopus 로고
    • As the west goes dry
    • DOI 10.1126/science.303.5661.1124
    • Service, R. F. (2004), As the west goes dry, Science, 303, 1124-1127. (Pubitemid 38233554)
    • (2004) Science , vol.303 , Issue.5661 , pp. 1124-1127
    • Service, R.F.1
  • 67
    • 33645541476 scopus 로고    scopus 로고
    • Snow data assimilation via an ensemble Kalman filter
    • DOI 10.1175/JHM505.1
    • Slater, A. G., and M. P. Clark (2006), Snow data assimilation via an ensemble Kalman filter, J. Hydrometeorol., 7, 478-493. (Pubitemid 44070416)
    • (2006) Journal of Hydrometeorology , vol.7 , Issue.3 , pp. 478-493
    • Slater, A.G.1    Clark, M.P.2
  • 68
    • 0019227508 scopus 로고
    • Stochastic parameter estimation procedures for hydrologie rainfall-runoff models: Correlated and heteroscedastic error cases
    • doi:10.1029/ WR016i002p00430
    • Sorooshian, S., and J. A. Dracup (1980), Stochastic parameter estimation procedures for hydrologie rainfall-runoff models: Correlated and heteroscedastic error cases, Water Resour. Res., 16, 430-442, doi:10.1029/ WR016i002p00430.
    • (1980) Water Resour. Res. , vol.16 , pp. 430-442
    • Sorooshian, S.1    Dracup, J.A.2
  • 69
    • 1542291407 scopus 로고    scopus 로고
    • Changes in snowmelt runoff timing in western North America under a 'business as usual' climate change scenario
    • DOI 10.1023/B:CLIM.0000013702.22656.e8, the Effects of Climate Change on Water Resources in the West
    • Stewart, I. T., D. R. Cayan, and M. D. Dettinger (2004), Changes in snowmelt runoff timing in western North America under a 'business as usual' climate change scenario, Clim. Change, 62, 217-232. (Pubitemid 38300002)
    • (2004) Climatic Change , vol.62 , Issue.1-3 , pp. 217-232
    • Stewart, I.T.1    Cayan, D.R.2    Dettinger, M.D.3
  • 70
    • 0036194743 scopus 로고    scopus 로고
    • Inter-comparison of two snow models with different complexity using data from an alpine site
    • Selected papers from EGS General Assembly Symposium on Water Balance Components of High Mountain Basins
    • Strasser, U., P. Etchevers, and Y. Lejeune (2002), Inter-comparison of two snow models with different complexity using data from an alpine site, Nord. Hydrol., 33, 15-26. (Pubitemid 34207038)
    • (2002) Nordic Hydrology , vol.33 , Issue.1 , pp. 15-26
    • Strasser, U.1    Etchevers, P.2    Lejeune, Y.3
  • 71
    • 0003417291 scopus 로고    scopus 로고
    • Utah energy balance snow accumulation and melt model (UEB): Computer model technical description and users guide
    • Tarboton, D. G., and C. H. Luce (1996), Utah Energy Balance Snow Accumulation and Melt Model (UEB): Computer model technical description and users guide, Utah Water Res. Lab. Logan.
    • (1996) Utah Water Res. Lab. Logan
    • Tarboton, D.G.1    Luce, C.H.2
  • 72
    • 0034794967 scopus 로고    scopus 로고
    • Bayesian recursive parameter estimation for hydrologic models
    • DOI 10.1029/2000WR900405
    • Thiemann, M., M. Trosset, H. Gupta, and S. Sorooshian (2001), Bayesian recursive parameter estimation for hydrologic models, Water Resour. Res., 37, 2521-2535, doi:10.1029/2000WR900405. (Pubitemid 32908202)
    • (2001) Water Resources Research , vol.37 , Issue.10 , pp. 2521-2535
    • Thiemann, M.1    Trosset, M.2    Gupta, H.3    Sorooshian, S.4
  • 73
    • 69849096009 scopus 로고    scopus 로고
    • Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis
    • doi:10.1029/ 2008WR006825
    • Thyer, M., B. Renard, D. Kavetski, G. Kuczera, S. W. Franks, and S. Srikanthan (2009), Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis, Water Resour. Res., 45, W00B14, doi:10.1029/ 2008WR006825.
    • (2009) Water Resour. Res. , vol.45
    • Thyer, M.1    Renard, B.2    Kavetski, D.3    Kuczera, G.4    Franks, S.W.5    Srikanthan, S.6
  • 74
    • 78149408167 scopus 로고    scopus 로고
    • Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach
    • Tiwari, M. K., and C. Chatterjee (2010), Development of an accurate and reliable hourly flood forecasting model using wavelet-bootstrap-ANN (WBANN) hybrid approach, J. Hydrol., 394, 458-470.
    • (2010) J. Hydrol. , vol.394 , pp. 458-470
    • Tiwari, M.K.1    Chatterjee, C.2
  • 75
    • 11844259092 scopus 로고    scopus 로고
    • A new Snow-SVAT to simulate the accumulation and ablation of seasonal snow cover beneath a forest canopy
    • Tribbeck, M. J., R. J. Gurney, E. M. Morris, and D. W. C. Pearson (2004), A new snow-SVAT to simulate the accumulation and ablation of seasonal snow cover beneath a forest canopy, J. Glaciol., 50, 171-182. (Pubitemid 40355394)
    • (2004) Journal of Glaciology , vol.50 , Issue.169 , pp. 171-182
    • Tribbeck, M.J.1    Gurney, R.J.2    Morris, E.M.3    Pearson, D.W.C.4
  • 76
    • 33847624077 scopus 로고    scopus 로고
    • Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging
    • doi:10.1029/ 2005WR004838
    • Vrugt, J. A., and B. A. Robinson (2007), Treatment of uncertainty using ensemble methods: Comparison of sequential data assimilation and Bayesian model averaging, Water Resour. Res., 43, W01411, doi:10.1029/ 2005WR004838.
    • (2007) Water Resour. Res. , vol.43
    • Vrugt, J.A.1    Robinson, B.A.2
  • 77
    • 0036998958 scopus 로고    scopus 로고
    • Toward improved identifiability of hydrologic model parameters: The information content of experimental data
    • doi:10.1029/2001WR001118
    • Vrugt, J. A., W. Bouten, H. V. Gupta, and S. Sorooshian (2002), Toward improved identifiability of hydrologic model parameters: The information content of experimental data, Water Resour. Res., 38(12), 1312, doi:10.1029/ 2001WR001118.
    • (2002) Water Resour. Res. , vol.38 , Issue.12 , pp. 1312
    • Vrugt, J.A.1    Bouten, W.2    Gupta, H.V.3    Sorooshian, S.4
  • 78
    • 1542757127 scopus 로고    scopus 로고
    • A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrological model parameters
    • doi:10.1029/2002WR001642
    • Vrugt, J. A., H. V. Gupta, W. Bouten, and S. Sorooshian (2003), A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrological model parameters, Water Resour. Res., 39(8), 1201, doi:10.1029/2002WR001642.
    • (2003) Water Resour. Res. , vol.39 , Issue.8 , pp. 1201
    • Vrugt, J.A.1    Gupta, H.V.2    Bouten, W.3    Sorooshian, S.4
  • 79
    • 14944365603 scopus 로고    scopus 로고
    • Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation
    • DOI 10.1029/2004WR003059, W01017
    • Vrugt, J. A., C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten (2005), Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation, Water Resour. Res., 41, W01017, doi:10.1029/2004WR003059. (Pubitemid 40359297)
    • (2005) Water Resources Research , vol.41 , Issue.1 , pp. 1-17
    • Vrugt, J.A.1    Diks, C.G.H.2    Gupta, H.V.3    Bouten, W.4    Verstraten, J.M.5
  • 80
    • 70349739462 scopus 로고    scopus 로고
    • Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?
    • doi:10.1007/s00477-008-0274-y
    • Vrugt, J. A., C. ter Braak, H. Gupta, and D. Robertson (2008a), Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?, Stochastic Environ. Res. Risk Assess., 23, 1011-1026, doi:10.1007/s00477-008-0274-y.
    • (2008) Stochastic Environ. Res. Risk Assess. , vol.23 , pp. 1011-1026
    • Vrugt, J.A.1    Ter Braak, C.2    Gupta, H.3    Robertson, D.4
  • 81
    • 57049099445 scopus 로고    scopus 로고
    • Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation
    • doi:10.1029/2007WR006720
    • Vrugt, J. A., C. J. F. ter Braak, M. P. Clark, J. M. Hyman, and B. A. Robinson (2008b), Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation, Water Resour. Res., 44, W00B09, doi:10.1029/2007WR006720.
    • (2008) Water Resour. Res. , vol.44
    • Vrugt, J.A.1    Ter Braak, C.J.F.2    Clark, M.P.3    Hyman, J.M.4    Robinson, B.A.5
  • 82
    • 65349141143 scopus 로고    scopus 로고
    • Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling
    • Vrugt, J. A., C. ter Braak, C. G. H. Diks, D. A. Roberts, J. M. Hyman, and D. Higdon (2009), Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling, Int. J. Nonlinear Sci. Numer. Simul., 10, 273-290.
    • (2009) Int. J. Nonlinear Sci. Numer. Simul. , vol.10 , pp. 273-290
    • Vrugt, J.A.1    Ter Braak, C.2    Diks, C.G.H.3    Roberts, D.A.4    Hyman, J.M.5    Higdon, D.6
  • 83
    • 33644505802 scopus 로고    scopus 로고
    • Parameter estimation and regionalization for continuous rainfall-runoff models including uncertainty
    • Wagener, T., and H. S. Wheater (2006), Parameter estimation and regionalization for continuous rainfall-runoff models including uncertainty, J. Hydrol., 320, 132-154.
    • (2006) J. Hydrol. , vol.320 , pp. 132-154
    • Wagener, T.1    Wheater, H.S.2
  • 84
    • 0037442971 scopus 로고    scopus 로고
    • Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis
    • DOI 10.1002/hyp.1135
    • Wagener, T., N. McIntyre, M. J. Lees, H. S. Wheater, and H. V. Gupta (2003), Towards reduced uncertainty in conceptual rainfall-runoff modelling: Dynamic identifiability analysis, Hydrol. Processes, 17, 455-476. (Pubitemid 36234589)
    • (2003) Hydrological Processes , vol.17 , Issue.2 , pp. 455-476
    • Wagener, T.1    McIntyre, N.2    Lees, M.J.3    Wheater, H.S.4    Gupta, H.V.5
  • 85
    • 34248171887 scopus 로고    scopus 로고
    • Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins
    • DOI 10.1016/j.advwatres.2007.01.005, PII S0309170807000140
    • Yadav, M., T. Wagener, and H. Gupta (2007), Regionalization of constraints on expected watershed response behavior for improved predictions in ungauged basins, Adv. Water Resour., 30, 1756-1774. (Pubitemid 46712120)
    • (2007) Advances in Water Resources , vol.30 , Issue.8 , pp. 1756-1774
    • Yadav, M.1    Wagener, T.2    Gupta, H.3
  • 86
    • 33644500136 scopus 로고    scopus 로고
    • Stream flow simulation within UK ungauged catchments using a daily rainfall-runoff model
    • Young, A. R. (2006), Stream flow simulation within UK ungauged catchments using a daily rainfall-runoff model, J. Hydrol., 320, 155-172.
    • (2006) J. Hydrol. , vol.320 , pp. 155-172
    • Young, A.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.