-
1
-
-
84858694152
-
Precompact noncompact reflexive abelian groups, Forum Mathematicum
-
in press. doi:10.1515/FORM.2011.061
-
S. Ardanza-Trevijano, M. J. Chasco, X. Domínguez, M. Tkachenko, Precompact noncompact reflexive abelian groups, Forum Mathematicum, in press. doi:10.1515/FORM.2011.061.
-
-
-
Ardanza-Trevijano, S.1
Chasco, M.J.2
Domínguez, X.3
Tkachenko, M.4
-
2
-
-
15844406491
-
Open and close-to-open mappings. Relations among spaces
-
Arkhangelskǐ, A. Open and close-to-open mappings. Relations among spaces. Trudy Moskov. Mat. Obsch. 1966, 15:181-223.
-
(1966)
Trudy Moskov. Mat. Obsch.
, vol.15
, pp. 181-223
-
-
Arkhangelskǐ, A.1
-
3
-
-
0242694349
-
Contributions to the duality theory of abelian topological groups and to the theory of nuclear groups
-
Warszawa
-
Außenhofer L. Contributions to the duality theory of abelian topological groups and to the theory of nuclear groups. Diss. Math. 1999, 384(Warszawa).
-
(1999)
Diss. Math.
, vol.384
-
-
Außenhofer, L.1
-
4
-
-
34547404302
-
On the Arc component of a locally compact abelian group
-
Außenhofer L. On the Arc component of a locally compact abelian group. Math. Z. 2007, 257(2):239-250.
-
(2007)
Math. Z.
, vol.257
, Issue.2
, pp. 239-250
-
-
Außenhofer, L.1
-
5
-
-
0003208315
-
Additive Subgroups of Topological Vector Spaces
-
Springer-Verlag
-
Banaszczyk W. Additive Subgroups of Topological Vector Spaces. Lecture Notes in Math. 1991, vol. 1466. Springer-Verlag.
-
(1991)
Lecture Notes in Math.
, vol.1466
-
-
Banaszczyk, W.1
-
7
-
-
79960891190
-
-
Duality in the class of precompact Abelian groups and the Baire property, preprint.
-
M. Bruguera, M. Tkachenko, Duality in the class of precompact Abelian groups and the Baire property, preprint.
-
-
-
Bruguera, M.1
Tkachenko, M.2
-
8
-
-
0032221011
-
Pontryagin duality for metrizable groups
-
Chasco M.J. Pontryagin duality for metrizable groups. Arch. Math. 1998, 70:22-28.
-
(1998)
Arch. Math.
, vol.70
, pp. 22-28
-
-
Chasco, M.J.1
-
10
-
-
70350728802
-
Quasi-convex density and determining subgroups of compact abelian groups
-
Dikranjan D., Shakhmatov D. Quasi-convex density and determining subgroups of compact abelian groups. J. Math. Anal. Appl. 2010, 363:42-48.
-
(2010)
J. Math. Anal. Appl.
, vol.363
, pp. 42-48
-
-
Dikranjan, D.1
Shakhmatov, D.2
-
11
-
-
79960893344
-
Which subgroups determine a compact abelian group?
-
preprint.
-
D. Dikranjan, D. Shakhmatov, Which subgroups determine a compact abelian group?, preprint.
-
-
-
Dikranjan, D.1
Shakhmatov, D.2
-
14
-
-
15844409279
-
Infinite Abelian Groups, vol. I
-
Academic Press
-
Fuchs L. Infinite Abelian Groups, vol. I. Pure and Applied Mathematics 1970, vol. 36. Academic Press.
-
(1970)
Pure and Applied Mathematics
, vol.36
-
-
Fuchs, L.1
-
15
-
-
78649445096
-
Pseudocompact group topologies with no infinite compact subsets
-
Galindo J., Macario S. Pseudocompact group topologies with no infinite compact subsets. J. Pure Appl. Algebra 2011, 215(4):655-663.
-
(2011)
J. Pure Appl. Algebra
, vol.215
, Issue.4
, pp. 655-663
-
-
Galindo, J.1
Macario, S.2
-
16
-
-
51249101689
-
Uncountable products of determined groups need not be determined
-
Hernández S., Macario S., Trigos-Arrieta F.J. Uncountable products of determined groups need not be determined. J. Math. Anal. Appl. 2008, 348(2):834-842.
-
(2008)
J. Math. Anal. Appl.
, vol.348
, Issue.2
, pp. 834-842
-
-
Hernández, S.1
Macario, S.2
Trigos-Arrieta, F.J.3
-
18
-
-
0000142226
-
Extensions of the Pontryagin duality I: Infinite products
-
Kaplan S. Extensions of the Pontryagin duality I: Infinite products. Duke Math. J. 1948, 15:649-658.
-
(1948)
Duke Math. J.
, vol.15
, pp. 649-658
-
-
Kaplan, S.1
-
19
-
-
79960889776
-
-
Totally bounded groups, Ph.D. thesis, Wesleyan University, Middletown
-
S.U. Raczkowski-Trigos, Totally bounded groups, Ph.D. thesis, Wesleyan University, Middletown, 1998.
-
(1998)
-
-
Raczkowski-Trigos, S.U.1
-
20
-
-
4944247275
-
Dense subgroups of locally compact groups
-
Rajagopalan M., Subrahmanian H. Dense subgroups of locally compact groups. Colloq. Math. 1976, 35:289-292.
-
(1976)
Colloq. Math.
, vol.35
, pp. 289-292
-
-
Rajagopalan, M.1
Subrahmanian, H.2
|