메뉴 건너뛰기




Volumn 24, Issue 7, 2011, Pages 767-778

Increasing robustness against background noise: Visual pattern recognition by a neocognitron

Author keywords

Background noise; Feature extraction; Neocognitron; Root mean square; Subtractive inhibition; Visual pattern recognition

Indexed keywords

BACKGROUND NOISE; NEOCOGNITRON; ROOT MEAN SQUARES; SUBTRACTIVE INHIBITION; VISUAL PATTERN RECOGNITION;

EID: 79960890980     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2011.03.017     Document Type: Article
Times cited : (20)

References (23)
  • 2
    • 70649107819 scopus 로고    scopus 로고
    • Neocognitron and the map transformation cascade
    • Cardoso Â, Wichert A. Neocognitron and the map transformation cascade. Neural Networks 2010, 23:74-88.
    • (2010) Neural Networks , vol.23 , pp. 74-88
    • Cardoso, Â.1    Wichert, A.2
  • 3
  • 4
    • 0036359692 scopus 로고    scopus 로고
    • Invariant recognition of feature combinations in the visual system
    • Elliffe M.C.M., Rolls E.T., Stringer S.M. Invariant recognition of feature combinations in the visual system. Biological Cybernetics 2002, 86:59-71.
    • (2002) Biological Cybernetics , vol.86 , pp. 59-71
    • Elliffe, M.C.M.1    Rolls, E.T.2    Stringer, S.M.3
  • 5
    • 0016758101 scopus 로고
    • Cognitron: a self-organizing multilayered neural network
    • Fukushima K. Cognitron: a self-organizing multilayered neural network. Biological Cybernetics 1975, 20(3/4):121-136.
    • (1975) Biological Cybernetics , vol.20 , Issue.3-4 , pp. 121-136
    • Fukushima, K.1
  • 6
    • 0019152630 scopus 로고
    • Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position
    • Fukushima K. Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 1980, 36(4):193-202.
    • (1980) Biological Cybernetics , vol.36 , Issue.4 , pp. 193-202
    • Fukushima, K.1
  • 7
    • 0023846591 scopus 로고
    • Neocognitron: a hierarchical neural network capable of visual pattern recognition
    • Fukushima K. Neocognitron: a hierarchical neural network capable of visual pattern recognition. Neural Networks 1988, 1(2):119-130.
    • (1988) Neural Networks , vol.1 , Issue.2 , pp. 119-130
    • Fukushima, K.1
  • 8
    • 0037381347 scopus 로고    scopus 로고
    • Neocognitron for handwritten digit recognition
    • Fukushima K. Neocognitron for handwritten digit recognition. Neurocomputing 2003, 51:161-180.
    • (2003) Neurocomputing , vol.51 , pp. 161-180
    • Fukushima, K.1
  • 9
    • 77955052968 scopus 로고    scopus 로고
    • Neocognitron trained with winner-kill-loser rule
    • Fukushima K. Neocognitron trained with winner-kill-loser rule. Neural Networks 2010, 23(7):926-938.
    • (2010) Neural Networks , vol.23 , Issue.7 , pp. 926-938
    • Fukushima, K.1
  • 10
    • 78650202057 scopus 로고    scopus 로고
    • Increased robustness against background noise: pattern recognition by a neocognitron
    • Springer-Verlag, Berlin, Heidelberg, ICONIP 2010, part II
    • Fukushima K. Increased robustness against background noise: pattern recognition by a neocognitron. LNCS 2010, Vol. 6444:574-581. Springer-Verlag, Berlin, Heidelberg.
    • (2010) LNCS , vol.6444 , pp. 574-581
    • Fukushima, K.1
  • 11
    • 0020331278 scopus 로고
    • Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position
    • Fukushima K., Miyake S. Neocognitron: a new algorithm for pattern recognition tolerant of deformations and shifts in position. Pattern Recognition 1982, 15(6):455-469.
    • (1982) Pattern Recognition , vol.15 , Issue.6 , pp. 455-469
    • Fukushima, K.1    Miyake, S.2
  • 12
    • 0030152250 scopus 로고    scopus 로고
    • Use of different thresholds in learning and recognition
    • Fukushima K., Tanigawa M. Use of different thresholds in learning and recognition. Neurocomputing 1996, 11(1):1-17.
    • (1996) Neurocomputing , vol.11 , Issue.1 , pp. 1-17
    • Fukushima, K.1    Tanigawa, M.2
  • 13
    • 0004230131 scopus 로고
    • John Wiley & Sons, New York, London, Sydney
    • Hebb D.O. Organization of behavior 1949, John Wiley & Sons, New York, London, Sydney.
    • (1949) Organization of behavior
    • Hebb, D.O.1
  • 14
    • 0026904517 scopus 로고
    • Normalization of cell responses in cat striate cortex
    • Heeger D.J. Normalization of cell responses in cat striate cortex. Visual Neuroscience 1992, 9:181-197.
    • (1992) Visual Neuroscience , vol.9 , pp. 181-197
    • Heeger, D.J.1
  • 15
    • 0026259379 scopus 로고
    • Optimal training of thresholded linear correlation classifiers
    • Hildebrandt T.H. Optimal training of thresholded linear correlation classifiers. IEEE Transactions on Neural Networks 1991, 2(6):577-588.
    • (1991) IEEE Transactions on Neural Networks , vol.2 , Issue.6 , pp. 577-588
    • Hildebrandt, T.H.1
  • 16
    • 0001331725 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
    • Hubel D.H., Wiesel T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. Journal of physiology (London) 1962, 106(1):106-154.
    • (1962) Journal of physiology (London) , vol.106 , Issue.1 , pp. 106-154
    • Hubel, D.H.1    Wiesel, T.N.2
  • 17
    • 78651178699 scopus 로고
    • Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat
    • Hubel D.H., Wiesel T.N. Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. Journal of Neurophysiology 1965, 28(2):229-289.
    • (1965) Journal of Neurophysiology , vol.28 , Issue.2 , pp. 229-289
    • Hubel, D.H.1    Wiesel, T.N.2
  • 19
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning applied to document recognition. Proceedings of the IEEE 1998, 86(11):2278-2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 20
    • 0029569057 scopus 로고
    • Artificial convolution neural network for medical image pattern recognition
    • Lo S.B., Chan H., Lin J., Li H., Freedman M.T., Mun S.K. Artificial convolution neural network for medical image pattern recognition. Neural Networks 1995, 8(7/8):1201-1214.
    • (1995) Neural Networks , vol.8 , Issue.7-8 , pp. 1201-1214
    • Lo, S.B.1    Chan, H.2    Lin, J.3    Li, H.4    Freedman, M.T.5    Mun, S.K.6
  • 21
    • 0025100474 scopus 로고
    • Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors
    • Ohzawa I., DeAngelis G.C., Freeman R.D. Stereoscopic depth discrimination in the visual cortex: neurons ideally suited as disparity detectors. Science 1990, 249(4972):1037-1041.
    • (1990) Science , vol.249 , Issue.4972 , pp. 1037-1041
    • Ohzawa, I.1    DeAngelis, G.C.2    Freeman, R.D.3
  • 22
    • 0033316361 scopus 로고    scopus 로고
    • Hierarchical models of object recognition in cortex
    • Riesenhuber M., Poggio T. Hierarchical models of object recognition in cortex. Nature Neuroscience 1999, 2(11):1019-1025.
    • (1999) Nature Neuroscience , vol.2 , Issue.11 , pp. 1019-1025
    • Riesenhuber, M.1    Poggio, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.