-
2
-
-
34447340522
-
-
N. Li, J. Wu, T. Hasegawa, J. Sakai, L. Bai, L. Wang, S. Kakuta, Y. Furuya, H. Ogura, T. Kataoka, A. Tomida, T. Tsuruo, and M. Ando J. Nat. Prod. 70 2007 998 1001
-
(2007)
J. Nat. Prod.
, vol.70
, pp. 998-1001
-
-
Li, N.1
Wu, J.2
Hasegawa, T.3
Sakai, J.4
Bai, L.5
Wang, L.6
Kakuta, S.7
Furuya, Y.8
Ogura, H.9
Kataoka, T.10
Tomida, A.11
Tsuruo, T.12
Ando, M.13
-
6
-
-
0010383166
-
-
M.P. Gupta, T.D. Arias, N.H. Williams, R. Bos, and D.H.E. Tattje J. Nat. Prod. 48 1985 330
-
(1985)
J. Nat. Prod.
, vol.48
, pp. 330
-
-
Gupta, M.P.1
Arias, T.D.2
Williams, N.H.3
Bos, R.4
Tattje, D.H.E.5
-
8
-
-
84982061424
-
-
F. Dallacker, R.D. Maier, R. Morcinek, A. Rabie, and R. Van Loo Chem. Ber. 113 1980 1320 1327
-
(1980)
Chem. Ber.
, vol.113
, pp. 1320-1327
-
-
Dallacker, F.1
Maier, R.D.2
Morcinek, R.3
Rabie, A.4
Van Loo, R.5
-
9
-
-
1642461642
-
-
R. Venkatasamy, L. Faas, A.R. Young, A. Ramana, and R.C. Hidera Bioorg. Med. Chem. 12 2004 1905 1920
-
(2004)
Bioorg. Med. Chem.
, vol.12
, pp. 1905-1920
-
-
Venkatasamy, R.1
Faas, L.2
Young, A.R.3
Ramana, A.4
Hidera, R.C.5
-
10
-
-
1942502730
-
-
T. Ullrich, K. Baumann, K. Welzenbach, S. Schmutz, G. Camenisch, J.G. Meingassner, and S.G. Weitz Bioorg. Med. Chem. Lett. 14 2004 2483 2487
-
(2004)
Bioorg. Med. Chem. Lett.
, vol.14
, pp. 2483-2487
-
-
Ullrich, T.1
Baumann, K.2
Welzenbach, K.3
Schmutz, S.4
Camenisch, G.5
Meingassner, J.G.6
Weitz, S.G.7
-
11
-
-
79960846440
-
-
Matsuno, N.; Okamoto, H. U.S. Patent 7,354,911; 2008
-
Matsuno, N.; Okamoto, H. U.S. Patent 7,354,911; 2008.
-
-
-
-
12
-
-
79960836998
-
-
Spedding, D. L.; Stevenson, T. M. U.S. Patent 5,633,218; 1997
-
Spedding, D. L.; Stevenson, T. M. U.S. Patent 5,633,218; 1997.
-
-
-
-
13
-
-
79960835069
-
-
Minh, T. H.; Cole, E. R.; Crank, G. U.S. Patent 4,499,115; 1985
-
Minh, T. H.; Cole, E. R.; Crank, G. U.S. Patent 4,499,115; 1985.
-
-
-
-
14
-
-
9644273900
-
-
A.C. Leite, K.P. da Silva, I.A. de Souza, J.M. de Araujo, and D.J. Brondani Eur. J. Med. Chem. 39 2004 1059 1565
-
(2004)
Eur. J. Med. Chem.
, vol.39
, pp. 1059-1565
-
-
Leite, A.C.1
Da Silva, K.P.2
De Souza, I.A.3
De Araujo, J.M.4
Brondani, D.J.5
-
17
-
-
33847385430
-
-
W.-G. Zhang, J.-G. Lin, Z.-Y. Niu, R. Zhao, D.-L. Liu, N.-L. Wang, and X.-S. Yao J. Asian Nat. Prod. Res. 9 2007 23 28
-
(2007)
J. Asian Nat. Prod. Res.
, vol.9
, pp. 23-28
-
-
Zhang, W.-G.1
Lin, J.-G.2
Niu, Z.-Y.3
Zhao, R.4
Liu, D.-L.5
Wang, N.-L.6
Yao, X.-S.7
-
21
-
-
40249085708
-
-
X. Liang, S. Gao, W. Wang, W. Cheng, and J. Yang Chin. J. Chem. Eng. 16 2008 124 127
-
(2008)
Chin. J. Chem. Eng.
, vol.16
, pp. 124-127
-
-
Liang, X.1
Gao, S.2
Wang, W.3
Cheng, W.4
Yang, J.5
-
23
-
-
33750230353
-
-
T.-S. Li, L.-J. Li, B. Lu, and F. Yang J. Chem. Soc., Perkin Trans. 1 1998 3561 3564
-
(1998)
J. Chem. Soc., Perkin Trans. 1
, pp. 3561-3564
-
-
Li, T.-S.1
Li, L.-J.2
Lu, B.3
Yang, F.4
-
27
-
-
79960835151
-
-
note
-
The laboratory version of our microwave has a cavity size of 21.6 cm in height, 17.30 cm wide, and 25.4 cm deep with two 2.54 cm hole on the top of the microwave for the condenser and thermometer. The magnetron (700 W) was directly wired to variable electronic autotransformer for control of the magnetron power. ECM meter (10 A) was wired to the magnetron transformer to control the microwave power. The magnetic stirrer was installed beneath the cavity for stirring the reaction mixture. The reaction temperature was measured directly with a thermometer inserted into the reaction mixture through a condenser and/or by infrared reading. For chemical reactions, a conventional microwave is not applicable due to the fact that the magnetron power cannot be controlled and, therefore, reaction mixtures are burned after several minutes of microwave irradiation. Additionally, reaction mixtures cannot be stirred and neither a condenser nor a thermometer can be added to the reaction container. For these reasons conventional as well as currently available commercial microwave laboratory reactors cannot be used effectively in organic synthetic labs. However, conventional microwaves can be used for few short reactions (maximum a few minutes) where reaction media overheating and solvent evaporation are acceptable.
-
-
-
-
31
-
-
79951504249
-
-
A.K. Nagariya, A.K. Meena, A.K. Yadav, U.S. Niranjan, A.K. Pathak, B. Singh, and M.M. Rao J. Pharm. Research 3 2010 575 580
-
(2010)
J. Pharm. Research
, vol.3
, pp. 575-580
-
-
Nagariya, A.K.1
Meena, A.K.2
Yadav, A.K.3
Niranjan, U.S.4
Pathak, A.K.5
Singh, B.6
Rao, M.M.7
-
34
-
-
79960843185
-
-
3 filtrate was recorded on Varian Unity 400
-
3 filtrate was recorded on Varian Unity 400.
-
-
-
-
35
-
-
79960843259
-
-
Benzene (10 ml) suspension of carbonyl compound (1 mmol), catechol (1.1 g; 1 mmol), and p-toluenesulfonic acid (5 mg) ws refluxed with Dean Stark trap and microwave power of 400 W for time indicated in Tables 2 and 3. Solvent was evaporated at reduced pressure. The solid residue was dissolved in hot dichloromethane-hexane (1:9; 3 ml) place on short (2 × 2 inches) silica gel column. Silica gel was washed with dichloromethane-hexane (1:9; 3 × 20 ml). The filtrates were combined and the solvent was evaporated to yield pure product
-
Benzene (10 ml) suspension of carbonyl compound (1 mmol), catechol (1.1 g; 1 mmol), and p-toluenesulfonic acid (5 mg) ws refluxed with Dean Stark trap and microwave power of 400 W for time indicated in Tables 2 and 3. Solvent was evaporated at reduced pressure. The solid residue was dissolved in hot dichloromethane-hexane (1:9; 3 ml) place on short (2 × 2 inches) silica gel column. Silica gel was washed with dichloromethane-hexane (1:9; 3 × 20 ml). The filtrates were combined and the solvent was evaporated to yield pure product.
-
-
-
-
36
-
-
79960846590
-
-
3) δ 147.8, 141.8, 129.4. 128.9, 125.5, 121.9, 117.1, 109.1 and 27.5 ppm
-
3) δ 147.8, 141.8, 129.4. 128.9, 125.5, 121.9, 117.1, 109.1 and 27.5 ppm.
-
-
-
|