-
2
-
-
0036373967
-
Geometric stability switch criteria in delay differential systems with delay dependent parameters
-
Beretta, E. and Kuang, Y. (2002). Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal. 33 1144-1165.
-
(2002)
SIAM J. Math. Anal.
, vol.33
, pp. 1144-1165
-
-
Beretta, E.1
Kuang, Y.2
-
3
-
-
0010351336
-
Stability with respect to the delay: On the paper of K.L. Cooke and P. Van den Driessche
-
Boese, F.G. (1998). Stability with respect to the delay: On the paper of K.L. Cooke and P. van den Driessche. J. Math. Anal.Appl., 228 293-321.
-
(1998)
J. Math. Anal. Appl.
, vol.228
, pp. 293-321
-
-
Boese, F.G.1
-
4
-
-
0029378753
-
A new method for computing delay margins for stability of linear delay systems
-
Chen, J., Gu, C. and Nett, C. N. (1995). A new method for computing delay margins for stability of linear delay systems, Syst. & Contr. Lett. 26 101-117.
-
(1995)
Syst. & Contr. Lett.
, vol.26
, pp. 101-117
-
-
Chen, J.1
Gu, C.2
Nett, C.N.3
-
5
-
-
0000209631
-
Discrete delay, distributed delay and stability switches
-
Cooke, K. L. and Grossman, Z. (1982). Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl. 86 (1982) 592-627.
-
(1982)
J. Math. Anal. Appl.
, vol.86
, Issue.1982
, pp. 592-627
-
-
Cooke, K.L.1
Grossman, Z.2
-
7
-
-
0000226236
-
A procedure for determination of the exponential stability of certain differential-difference equations
-
Datko, R. (1978). A procedure for determination of the exponential stability of certain differential-difference equations. Quart. Appl. Math. 36 279-292.
-
(1978)
Quart. Appl. Math.
, vol.36
, pp. 279-292
-
-
Datko, R.1
-
9
-
-
0022018176
-
Stability in linear delay equations
-
Hale, J. K., Infante, E. F. and Tsen, F. S. - P. Stability in linear delay equations. J. Math. Anal. Appl., 105 (1985) 533-555.
-
(1985)
J. Math. Anal. Appl.
, vol.105
, pp. 533-555
-
-
Hale, J.K.1
Infante, E.F.2
Tsen, F.S.-P.3
-
10
-
-
0021137891
-
Simplified analytical stability test for systems with commensurate time delays
-
Hertz, D., Jury, E. I. and Zeheb, E. (1984). Simplified analytical stability test for systems with commensurate time delays. in IEE Proc. Contr. Theory & Appl., Pt. D 131 52-56.
-
(1984)
IEE Proc. Contr. Theory & Appl.
, vol.131
, Issue.PART D
, pp. 52-56
-
-
Hertz, D.1
Jury, E.I.2
Zeheb, E.3
-
11
-
-
0019068509
-
On the relationship between zero criteria for two-variable polynomials and asymptotic stability of delay differential equations
-
Kamen, E. W. (1980). On the relationship between zero criteria for two-variable polynomials and asymptotic stability of delay differential equations. IEEE Trans. Automat. Contr., AC-25 983-984.
-
(1980)
IEEE Trans. Automat. Contr.
, vol.AC-25
, pp. 983-984
-
-
Kamen, E.W.1
-
12
-
-
0020113073
-
Linear systems with commensurate time delays: Stability and stabilization independent of delay
-
corrections in IEEE Trans. Automat. Contr., AC-28 (1983) 248-249
-
Kamen, E. W. (1982). Linear systems with commensurate time delays: Stability and stabilization independent of delay. IEEE Trans. Automat. Contr., AC-27 367-375
-
(1982)
IEEE Trans. Automat. Contr.
, vol.AC-27
, pp. 367-375
-
-
Kamen, E.W.1
-
13
-
-
84939391858
-
Linear systems with commensurate time delays: Stability and stabilization independent of delay
-
Kamen, E. W., Linear systems with commensurate time delays: Stability and stabilization independent of delay, corrections in IEEE Trans. Automat. Contr., AC-28 (1983) 248-249.
-
(1983)
IEEE Trans. Automat. Contr.
, vol.AC-28
, pp. 248-249
-
-
Kamen, E.W.1
-
16
-
-
0001514357
-
D-subdivisions and spaces of quasi-polynomials
-
Neimark, J. (1949). D-subdivisions and spaces of quasi-polynomials. Prikl. Math. Mech., 13 349-380.
-
(1949)
Prikl. Math. Mech.
, vol.13
, pp. 349-380
-
-
Neimark, J.1
-
17
-
-
0032314279
-
Stability and hyperbolicity of linear systems with delayed state: A matrix pencil approach
-
Niculescu, S.-I. (1998). Stability and hyperbolicity of linear systems with delayed state: A matrix pencil approach. IMA J. Math. Contr. Information 15 331-347.
-
(1998)
IMA J. Math. Contr. Information
, vol.15
, pp. 331-347
-
-
Niculescu, S.-I.1
-
19
-
-
0036576491
-
An exact method for the stability analysis of time-delayed LTI systems
-
Olgac, N. and Sipahi, R. (2002). An exact method for the stability analysis of time-delayed LTI systems, IEEE Transactions on Automatic Control, 47 793-797.
-
(2002)
IEEE Transactions on Automatic Control
, vol.47
, pp. 793-797
-
-
Olgac, N.1
Sipahi, R.2
-
20
-
-
0009617924
-
A stability test for systems with delays
-
San Francisco
-
Rekasius, Z. V. (1980). A stability test for systems with delays. Proc. 1980 Joint Automatic Contr. Conf., San Francisco, CL TP9-A.
-
(1980)
Proc. 1980 Joint Automatic Contr. Conf.
, vol.CLTP9-A
-
-
Rekasius, Z.V.1
-
21
-
-
0008144734
-
An analytical stability test for a class of time-delay systems
-
Thowsen, A. (1981). An analytical stability test for a class of time-delay systems. IEEE Trans. Automat. Contr. AC-25 735-736.
-
(1981)
IEEE Trans. Automat. Contr.
, vol.AC-25
, pp. 735-736
-
-
Thowsen, A.1
-
22
-
-
0023313636
-
Direct method for TDS stability analysis
-
Walton, K. and Marshall, J. E. (1987). Direct Method for TDS Stability Analysis, IEE Proceedings, 134, Pt. D:2 101-107.
-
(1987)
IEE Proceedings
, vol.134
, Issue.2 PART D
, pp. 101-107
-
-
Walton, K.1
Marshall, J.E.2
|