메뉴 건너뛰기




Volumn 28, Issue 2, 2011, Pages 184-209

MCS: A Method for Finding the Number of Clusters

Author keywords

Bivariate normal mixture; Circular data; Clustering algorithm; Comparing partitions; Correction for chance agreement; Gap statistic; Number of clusters; Similarity index

Indexed keywords


EID: 79960555635     PISSN: 01764268     EISSN: 14321343     Source Type: Journal    
DOI: 10.1007/s00357-010-9069-1     Document Type: Article
Times cited : (19)

References (50)
  • 2
    • 77953351686 scopus 로고    scopus 로고
    • Means and Variances for a Family of Similarity Indices Used in Cluster Analysis
    • ALBATINEH, A. N (2010), "Means and Variances for a Family of Similarity Indices Used in Cluster Analysis", Journal of Statistical Planning and Inference, 140, 2828-2838.
    • (2010) Journal of Statistical Planning and Inference , vol.140 , pp. 2828-2838
    • Albatineh, A.N.1
  • 3
    • 0000974551 scopus 로고
    • Plots of High Dimensional Data
    • ANDREWS, D. F. (1972), "Plots of High Dimensional Data", Biometrics, 28, 125-136.
    • (1972) Biometrics , vol.28 , pp. 125-136
    • Andrews, D.F.1
  • 4
    • 0027453616 scopus 로고
    • Model-based Gaussian and Non-Gaussian Clustering
    • BANFIELD, J. D., and RAFTERY, A. E. (1993), "Model-based Gaussian and Non-Gaussian Clustering", Biometrics, 49, 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 5
    • 0041382945 scopus 로고    scopus 로고
    • Further Results on Lund's Statistic for Identifying Cluster in a Circular Data Set with Application to Time Series
    • BARAGONA, R. (2003), "Further Results on Lund's Statistic for Identifying Cluster in a Circular Data Set with Application to Time Series", Communications in Statistics: Simulation and Computation, 32, 943-952.
    • (2003) Communications in Statistics: Simulation and Computation , vol.32 , pp. 943-952
    • Baragona, R.1
  • 7
    • 0003158632 scopus 로고
    • On Some Significance Tests in Cluster Analysis
    • BOCK, H. H. (1985), "On Some Significance Tests in Cluster Analysis", Journal of Classification, 2, 77-108.
    • (1985) Journal of Classification , vol.2 , pp. 77-108
    • Bock, H.H.1
  • 8
    • 0000642069 scopus 로고
    • Replicating Cluster Analysis: Method, Consistency, and Validity
    • BRECKENRIDGE, J. N. (1989), "Replicating Cluster Analysis: Method, Consistency, and Validity", Multivariate Behavioral Research, 24, 147-161.
    • (1989) Multivariate Behavioral Research , vol.24 , pp. 147-161
    • Breckenridge, J.N.1
  • 9
    • 38949174601 scopus 로고    scopus 로고
    • A Comparison of Heuristic Procedures for Minimum Within-Cluster Sums of Squares Partitioning
    • BRUSCO, M. J., and STEINLEY, D. (2007), "A Comparison of Heuristic Procedures for Minimum Within-Cluster Sums of Squares Partitioning", Psychometrika, 72, 583-600.
    • (2007) Psychometrika , vol.72 , pp. 583-600
    • Brusco, M.J.1    Steinley, D.2
  • 12
    • 0037172724 scopus 로고    scopus 로고
    • A Prediction-based Resampling Method for Estimating the Number of Custers in a Dataset
    • DUDOIT, S., and FRIDLYAND, J. (2002), "A Prediction-based Resampling Method for Estimating the Number of Custers in a Dataset", Genome Biology, 3, 1-21.
    • (2002) Genome Biology , vol.3 , pp. 1-21
    • Dudoit, S.1    Fridlyand, J.2
  • 16
    • 0032269108 scopus 로고    scopus 로고
    • How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis
    • FRALEY, C., and RAFTERY, A. E. (1998), "How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis", The Computer Journal, 41, 578-588.
    • (1998) The Computer Journal , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 18
    • 0004241258 scopus 로고    scopus 로고
    • (2nd ed.), St. Andrews: Chapman & Hall/CRC
    • GORDON, A. D. (1999), Classification (2nd ed.), St. Andrews: Chapman & Hall/CRC.
    • (1999) Classification
    • Gordon, A.D.1
  • 19
    • 0010556647 scopus 로고
    • In Prediction of Personal Adjustment, ed. P. Horst, New York: Social Science Research Council
    • GUTTMAN, L. (1941), "An Outline of the Statistical Theory of Prediction", in In Prediction of Personal Adjustment, ed. P. Horst, New York: Social Science Research Council.
    • (1941) An Outline of the Statistical Theory of Prediction
    • Guttman, L.1
  • 20
    • 0003117118 scopus 로고
    • An Examination of Procedures for Determining the Number of Clusters in a Data Set
    • ed. E. Diday et al., Paris: Springer-Verlag
    • HARDY, A. (1994), "An Examination of Procedures for Determining the Number of Clusters in a Data Set", in New Approaches in Classification and Data Analysis, ed. E. Diday et al., Paris: Springer-Verlag, pp. 178-185.
    • (1994) New Approaches in Classification and Data Analysis , pp. 178-185
    • Hardy, A.1
  • 26
    • 0024991583 scopus 로고
    • Cluster Analysis of Antigenic Profiles of Tumors: Selection of Number of Clusters Using Akaike's Information Criterion
    • KOZIOL, J. A. (1990), "Cluster Analysis of Antigenic Profiles of Tumors: Selection of Number of Clusters Using Akaike's Information Criterion", Methods of Information in Medicine, 29, 200-204.
    • (1990) Methods of Information in Medicine , vol.29 , pp. 200-204
    • Koziol, J.A.1
  • 27
    • 0009345505 scopus 로고
    • A Graph Theoretic Criterion for Determining the Number of Clusters in a Data Set
    • KROLAK-SCHWERDT, S., and ECKES, T. (1992), "A Graph Theoretic Criterion for Determining the Number of Clusters in a Data Set", Multivariate Behavior Research, 27, 541-565.
    • (1992) Multivariate Behavior Research , vol.27 , pp. 541-565
    • Krolak-Schwerdt, S.1    Eckes, T.2
  • 28
    • 0023905024 scopus 로고
    • A Criterion for Determining the Number of Groups in a Data Set Using Sum of Squares Clustering
    • KRZANOWSKI, W. J., and LAI, Y. T. (1985), "A Criterion for Determining the Number of Groups in a Data Set Using Sum of Squares Clustering", Biometrics, 44, 23-34.
    • (1985) Biometrics , vol.44 , pp. 23-34
    • Krzanowski, W.J.1    Lai, Y.T.2
  • 30
    • 2442611856 scopus 로고    scopus 로고
    • Stability-Based Validation of Clustering Solutions
    • LANGE, T., ROTH, V., BRAUN, M. L., and BUHMANN, J. M. (2004), "Stability-Based Validation of Clustering Solutions", Neural Computations, 16, 1299-1323.
    • (2004) Neural Computations , vol.16 , pp. 1299-1323
    • Lange, T.1    Roth, V.2    Braun, M.L.3    Buhmann, J.M.4
  • 33
    • 0015113659 scopus 로고
    • Practical Problems in a Method of Cluster Analysis
    • MARRIOTT, F. H. C. (1971), "Practical Problems in a Method of Cluster Analysis", Biometrics, 27, 501-514.
    • (1971) Biometrics , vol.27 , pp. 501-514
    • Marriott, F.H.C.1
  • 34
    • 34250115918 scopus 로고
    • An Examination of Procedures for Determining the Number of Clusters in a Data Set
    • MILLIGAN, G., and COOPER, M. (1985), "An Examination of Procedures for Determining the Number of Clusters in a Data Set", Psychometrika, 50, 159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.1    Cooper, M.2
  • 35
    • 84948872101 scopus 로고
    • A Study of the Comparability of External Criteria for Hierarchical Cluster Analysis
    • MILLIGAN, G., and COOPER, M. (1986), "A Study of the Comparability of External Criteria for Hierarchical Cluster Analysis", Multivariate Behavioral Research, 21, 441-458.
    • (1986) Multivariate Behavioral Research , vol.21 , pp. 441-458
    • Milligan, G.1    Cooper, M.2
  • 36
    • 0020496932 scopus 로고
    • The Effect of Cluster Size, Dimensionality, and the Number of Clusters on Recovery of True Cluster Structure
    • PAMI-5
    • MILLIGAN, G., SOON, S., and SOKOL, L. (1983), "The Effect of Cluster Size, Dimensionality, and the Number of Clusters on Recovery of True Cluster Structure", IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-5, 40-47.
    • (1983) IEEE Transactions on Pattern Analysis and Machine Intelligence , pp. 40-47
    • Milligan, G.1    Soon, S.2    Sokol, L.3
  • 37
    • 84973745157 scopus 로고
    • The Measurement of Classification Agreement: An Adjustment to the Rand Statistic for Chance Agreement
    • MOREY, L., and AGRESTI, A. (1984), "The Measurement of Classification Agreement: An Adjustment to the Rand Statistic for Chance Agreement", Educational and Psychological Measurement, 44, 33-37.
    • (1984) Educational and Psychological Measurement , vol.44 , pp. 33-37
    • Morey, L.1    Agresti, A.2
  • 39
    • 35748932852 scopus 로고    scopus 로고
    • R Development Core Team R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0
    • R Development Core Team (2007), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-07-0, URL http://www. R-project. org.
    • (2007) R: A Language and Environment for Statistical Computing
  • 40
    • 84950632109 scopus 로고
    • Objective Criteria for the Evaluation of Clustering Methods
    • RAND, W. (1971), "Objective Criteria for the Evaluation of Clustering Methods", Journal of the American Statistical Association, 66, 846-850.
    • (1971) Journal of the American Statistical Association , vol.66 , pp. 846-850
    • Rand, W.1
  • 41
    • 33750701721 scopus 로고
    • The Effect of Cluster Size, Dimensionality, and Number of Clusters on Recovery of True Cluster Structure Through Chernoff-Type Faces
    • SAXENA, P. C., and NAVANEERHAM, K. (1991), "The Effect of Cluster Size, Dimensionality, and Number of Clusters on Recovery of True Cluster Structure Through Chernoff-Type Faces", The Statistician, 40, 415-425.
    • (1991) The Statistician , vol.40 , pp. 415-425
    • Saxena, P.C.1    Navaneerham, K.2
  • 42
    • 33750717774 scopus 로고
    • Comparison of Chernoff-Type Face and Non-Graphical Methods for Clustering Multivariate Observations
    • SAXENA, P. C., and NAVANEERHAM, K. (1993), "Comparison of Chernoff-Type Face and Non-Graphical Methods for Clustering Multivariate Observations", Computational Statistics and Data Analysis, 15, 63-79.
    • (1993) Computational Statistics and Data Analysis , vol.15 , pp. 63-79
    • Saxena, P.C.1    Navaneerham, K.2
  • 43
    • 34250871625 scopus 로고    scopus 로고
    • Initializing K-means Batch Clustering: A Critical Evaluation of Several Techniques
    • STEINLEY, D., and BRUSCO, M. J. (2007), "Initializing K-means Batch Clustering: A Critical Evaluation of Several Techniques", Journal of Classification, 24, 99-121.
    • (2007) Journal of Classification , vol.24 , pp. 99-121
    • Steinley, D.1    Brusco, M.J.2
  • 45
    • 0242679438 scopus 로고    scopus 로고
    • Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach
    • SUGAR, C. A., and JAMES, G. M. (2003), "Finding the Number of Clusters in a Dataset: An Information-Theoretic Approach", Journal of the American Statistical Association, 98, 750-763.
    • (2003) Journal of the American Statistical Association , vol.98 , pp. 750-763
    • Sugar, C.A.1    James, G.M.2
  • 48
    • 0003818096 scopus 로고
    • (3rd ed.), Program Library Unit, University of Edinburgh
    • WISHART, D. (1978), CLUSTAN User Manual (3rd ed.), Program Library Unit, University of Edinburgh.
    • (1978) CLUSTAN User Manual
    • Wishart, D.1
  • 49
    • 0012393308 scopus 로고
    • Pattern Clustering by Multivariate Mixture Analysis
    • WOLFE, J. H. (1970), "Pattern Clustering by Multivariate Mixture Analysis", Multivariate Behavioral Research, 5, 329-350.
    • (1970) Multivariate Behavioral Research , vol.5 , pp. 329-350
    • Wolfe, J.H.1
  • 50
    • 0000114024 scopus 로고    scopus 로고
    • On Fuzzy Clustering of Directional Data
    • YANG, M-S., and PAN, J-A. (1997), "On Fuzzy Clustering of Directional Data", Fuzzy Sets and Systems, 91, 319-326.
    • (1997) Fuzzy Sets and Systems , vol.91 , pp. 319-326
    • Yang, M.-S.1    Pan, J.-A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.