메뉴 건너뛰기




Volumn 17, Issue 8, 2011, Pages 1566-1577

Activities of human RRP6 and structure of the human RRP6 catalytic domain

Author keywords

3 to 5 decay; EXOSC10; Exosome; PM SCL 100; Structure

Indexed keywords

EXORIBONUCLEASE; HYDROLASE; RIBOSOME RNA; RRP6; UNCLASSIFIED DRUG;

EID: 79960473450     PISSN: 13558382     EISSN: 14699001     Source Type: Journal    
DOI: 10.1261/rna.2763111     Document Type: Article
Times cited : (58)

References (75)
  • 1
    • 0033214175 scopus 로고    scopus 로고
    • Functions of the exosome in rRNA, snoRNA and snRNA synthesis
    • DOI 10.1093/emboj/18.19.5399
    • Allmang C, Kufel J, Chanfreau G, Mitchell P, Petfalski E, Tollervey D. 1999a. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J 18: 5399-5410. (Pubitemid 29465589)
    • (1999) EMBO Journal , vol.18 , Issue.19 , pp. 5399-5410
    • Allmang, C.1    Kufel, J.2    Chanfreau, G.3    Mitchell, P.4    Petfalski, E.5    Tollervey, D.6
  • 3
    • 0037180825 scopus 로고    scopus 로고
    • The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila
    • DOI 10.1038/nature01181
    • Andrulis ED, Werner J, Nazarian A, Erdjument-Bromage H, Tempst P, Lis JT. 2002. The RNA processing exosome is linked to elongating RNA polymerase II in Drosophila. Nature 420: 837-841. (Pubitemid 36019634)
    • (2002) Nature , vol.420 , Issue.6917 , pp. 837-841
    • Andrulis, E.D.1    Werner, J.2    Nazarian, A.3    Erdjument-Bromage, H.4    Tempst, P.5    Lis, J.T.6
  • 5
    • 0026019625 scopus 로고
    • Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: A two metal ion mechanism
    • Beese LS, Steitz TA. 1991. Structural basis for the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. EMBO J 10: 25-33. (Pubitemid 21905263)
    • (1991) EMBO Journal , vol.10 , Issue.1 , pp. 25-33
    • Beese, L.S.1    Steitz, T.A.2
  • 6
    • 0026706745 scopus 로고
    • Cloning and characterization of the cDNA coding for a polymyositis-scleroderma overlap syndrome-related nucleolar 100-kD protein
    • Bluthner M, Bautz FA. 1992. Cloning and characterization of the cDNA coding for a polymyositis-scleroderma overlap syndrome-related nucleolar 100-kD protein. J Exp Med 176: 973-980.
    • (1992) J Exp Med , vol.176 , pp. 973-980
    • Bluthner, M.1    Bautz, F.A.2
  • 7
    • 0034028519 scopus 로고    scopus 로고
    • Identification of an α-helical epitope region on the PM/ScI-100 autoantigen with structural homology to a region on the heterochromatin p25β autoantigen using immobilized overlapping synthetic peptides
    • DOI 10.1007/s001090050381
    • Bluthner M, Mahler M, Muller DB, Dunzl H, Bautz FA. 2000. Identification of an alpha-helical epitope region on the PM/Scl-100 autoantigen with structural homology to a region on the heterochromatin p25β autoantigen using immobilized overlapping synthetic peptides. J Mol Med 78: 47-54. (Pubitemid 30164438)
    • (2000) Journal of Molecular Medicine , vol.78 , Issue.1 , pp. 47-54
    • Bluthner, M.1    Mahler, M.2    Muller, D.B.3    Dunzl, H.4    Bautz, F.A.5
  • 8
    • 70350336247 scopus 로고    scopus 로고
    • The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation
    • Bonneau F, Basquin J, Ebert J, Lorentzen E, Conti E. 2009. The yeast exosome functions as a macromolecular cage to channel RNA substrates for degradation. Cell 139: 547-559.
    • (2009) Cell , vol.139 , pp. 547-559
    • Bonneau, F.1    Basquin, J.2    Ebert, J.3    Lorentzen, E.4    Conti, E.5
  • 9
    • 0032557455 scopus 로고    scopus 로고
    • Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3' end formation
    • DOI 10.1074/jbc.273.21.13255
    • Briggs MW, Burkard KT, Butler JS. 1998. Rrp6p, the yeast homologue of the human PM-Scl 100-kDa autoantigen, is essential for efficient 5.8 S rRNA 3′ end formation. J Biol Chem 273: 13255-13263. (Pubitemid 28246898)
    • (1998) Journal of Biological Chemistry , vol.273 , Issue.21 , pp. 13255-13263
    • Briggs, M.W.1    Burkard, K.T.D.2    Butler, J.S.3
  • 12
    • 27644435644 scopus 로고    scopus 로고
    • Structural framework for the mechanism of archaeal exosomes in RNA processing
    • DOI 10.1016/j.molcel.2005.10.018, PII S1097276505017132
    • Buttner K, Wenig K, Hopfner KP. 2005. Structural framework for the mechanism of archaeal exosomes in RNA processing. Mol Cell 20: 461-471. (Pubitemid 41572302)
    • (2005) Molecular Cell , vol.20 , Issue.3 , pp. 461-471
    • Buttner, K.1    Wenig, K.2    Hopfner, K.-P.3
  • 13
    • 57149094672 scopus 로고    scopus 로고
    • Evidence for core exosome independent function of the nuclear exoribonuclease Rrp6p
    • Callahan KP, Butler JS. 2008. Evidence for core exosome independent function of the nuclear exoribonuclease Rrp6p. Nucleic Acids Res 36: 6645-6655.
    • (2008) Nucleic Acids Res , vol.36 , pp. 6645-6655
    • Callahan, Kp.1    Butler, J.S.2
  • 14
    • 77950509943 scopus 로고    scopus 로고
    • TRAMP complex enhances RNA degradation by the nuclear exosome component Rrp6
    • Callahan KP, Butler JS. 2010. TRAMP complex enhances RNA degradation by the nuclear exosome component Rrp6. J Biol Chem 285: 3540-3547.
    • (2010) J Biol Chem , vol.285 , pp. 3540-3547
    • Callahan, Kp.1    Butler, J.S.2
  • 15
    • 36048951040 scopus 로고    scopus 로고
    • Antisense RNA Stabilization Induces Transcriptional Gene Silencing via Histone Deacetylation in S. cerevisiae
    • DOI 10.1016/j.cell.2007.09.014, PII S0092867407012019
    • Camblong J, Iglesias N, Fickentscher C, Dieppois G, Stutz F. 2007. Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in S. cerevisiae. Cell 131: 706-717. (Pubitemid 350087198)
    • (2007) Cell , vol.131 , Issue.4 , pp. 706-717
    • Camblong, J.1    Iglesias, N.2    Fickentscher, C.3    Dieppois, G.4    Stutz, F.5
  • 16
    • 35548957338 scopus 로고    scopus 로고
    • Deletion of the nuclear exosome component RRP6 leads to continued accumulation of the histone mRNA HTB1 in S-phase of the cell cycle in Saccharomyces cerevisiae
    • DOI 10.1093/nar/gkm691
    • Canavan R, Bond U. 2007. Deletion of the nuclear exosome component RRP6 leads to continued accumulation of the histone mRNA HTB1 in S-phase of the cell cycle in Saccharomyces cerevisiae. Nucleic Acids Res 35: 6268-6279. (Pubitemid 350018588)
    • (2007) Nucleic Acids Research , vol.35 , Issue.18 , pp. 6268-6279
    • Canavan, R.1    Bond, U.2
  • 17
    • 0034693061 scopus 로고    scopus 로고
    • Poly(A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 S rRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells
    • Chekanova JA, Shaw RJ, Wills MA, Belostotsky DA. 2000. Poly(A) tail-dependent exonuclease AtRrp41p from Arabidopsis thaliana rescues 5.8 S rRNA processing and mRNA decay defects of the yeast ski6 mutant and is found in an exosome-sized complex in plant and yeast cells. J Biol Chem 275: 33158-33166.
    • (2000) J Biol Chem , vol.275 , pp. 33158-33166
    • Chekanova, J.A.1    Shaw, R.J.2    Wills, M.A.3    Belostotsky, D.A.4
  • 20
    • 79953017227 scopus 로고    scopus 로고
    • The C-terminal region of the exosome-associated protein Rrp47 is specifically required for box C/D small nucleolar RNA 3′-maturation
    • Costello JL, Stead JA, Feigenbutz M, Jones RM, Mitchell P. 2011. The C-terminal region of the exosome-associated protein Rrp47 is specifically required for box C/D small nucleolar RNA 3′-maturation. J Biol Chem 286: 4535-4543.
    • (2011) J Biol Chem , vol.286 , pp. 4535-4543
    • Costello, J.L.1    Stead, J.A.2    Feigenbutz, M.3    Jones, R.M.4    Mitchell, P.5
  • 21
    • 33644784770 scopus 로고    scopus 로고
    • Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae
    • DOI 10.1073/pnas.0507783103
    • Davis CA, Ares M Jr. 2006. Accumulation of unstable promoter-associated transcripts upon loss of the nuclear exosome subunit Rrp6p in Saccharomyces cerevisiae. Proc Natl Acad Sci 103: 3262-3267. (Pubitemid 43346458)
    • (2006) Proceedings of the National Academy of Sciences of the United States of America , vol.103 , Issue.9 , pp. 3262-3267
    • Davis, C.A.1    Ares Jr., M.2
  • 23
    • 33846068920 scopus 로고    scopus 로고
    • A single subunit, Dis3, is essentially responsible for yeast exosome core activity
    • DOI 10.1038/nsmb1184, PII NSMB1184
    • Dziembowski A, Lorentzen E, Conti E, Seraphin B. 2007. A single subunit, Dis3, is essentially responsible for yeast exosome core activity. Nat Struct Mol Biol 14: 15-22. (Pubitemid 46067418)
    • (2007) Nature Structural and Molecular Biology , vol.14 , Issue.1 , pp. 15-22
    • Dziembowski, A.1    Lorentzen, E.2    Conti, E.3    Seraphin, B.4
  • 24
    • 0035898660 scopus 로고    scopus 로고
    • The exosome of Trypanosoma brucei
    • DOI 10.1093/emboj/20.14.3831
    • Estevez AM, Kempf T, Clayton C. 2001. The exosome of Trypanosoma brucei. EMBO J 20: 3831-3839. (Pubitemid 32691794)
    • (2001) EMBO Journal , vol.20 , Issue.14 , pp. 3831-3839
    • Estevez, A.M.1    Kempf, T.2    Clayton, C.3
  • 26
    • 0033568319 scopus 로고    scopus 로고
    • Effects of anti-PM-Scl 100 (Rrp6p exonuclease) antibodies on prenucleolar body dynamics at the end of mitosis
    • DOI 10.1006/excr.1999.4578
    • Fomproix N, Hernandez-Verdun D. 1999. Effects of anti-PM-Scl 100 (Rrp6p exonuclease) antibodies on prenucleolar body dynamics at the end of mitosis. Exp Cell Res 251: 452-464. (Pubitemid 29431882)
    • (1999) Experimental Cell Research , vol.251 , Issue.2 , pp. 452-464
    • Fomproix, N.1    Hernandez-Verdun, D.2
  • 27
    • 57749178666 scopus 로고    scopus 로고
    • Reconstitution of RNA exosomes from human and Saccharomyces cerevisiae cloning, expression, purification, and activity assays
    • Greimann JC, Lima CD. 2008. Reconstitution of RNA exosomes from human and Saccharomyces cerevisiae cloning, expression, purification, and activity assays. Methods Enzymol 448: 185-210.
    • (2008) Methods Enzymol , vol.448 , pp. 185-210
    • Greimann, J.C.1    Lima, C.D.2
  • 28
    • 53949109201 scopus 로고    scopus 로고
    • Polyadenylation linked to transcription termination directs the processing of snoRNA precursors in yeast
    • Grzechnik P, Kufel J. 2008. Polyadenylation linked to transcription termination directs the processing of snoRNA precursors in yeast. Mol Cell 32: 247-258.
    • (2008) Mol Cell , vol.32 , pp. 247-258
    • Grzechnik, P.1    Kufel, J.2
  • 29
    • 41549094037 scopus 로고    scopus 로고
    • The nuclear RNA surveillance machinery: The link between ncRNAs and genome structure in budding yeast?
    • Houseley J, Tollervey D. 2008. The nuclear RNA surveillance machinery: the link between ncRNAs and genome structure in budding yeast? Biochim Biophys Acta 1779: 239-246.
    • (2008) Biochim Biophys Acta , vol.1779 , pp. 239-246
    • Houseley, J.1    Tollervey, D.2
  • 30
    • 60149090021 scopus 로고    scopus 로고
    • The many pathways of RNA degradation
    • Houseley J, Tollervey D. 2009. The many pathways of RNA degradation. Cell 136: 763-776.
    • (2009) Cell , vol.136 , pp. 763-776
    • Houseley, J.1    Tollervey, D.2
  • 31
    • 79960668648 scopus 로고    scopus 로고
    • Structural components and architectures of RNA exosomes
    • ed. TH Jensen, Landes Bioscience and Springer Science, New York
    • Januszyk K, Lima CD. 2010. Structural components and architectures of RNA exosomes. In RNA exosome (ed. TH Jensen), Vol. 702, pp. 9-28. Landes Bioscience and Springer Science, New York.
    • (2010) RNA Exosome , vol.702 , pp. 9-28
    • Januszyk, K.1    Lima, C.D.2
  • 32
    • 84889120137 scopus 로고
    • Improved methods for building protein models in electron-density maps and the location of errors in these models
    • Jones TA, Zou JY, Cowan SW, Kjeldgaard M. 1991. Improved methods for building protein models in electron-density maps and the location of errors in these models. Acta Crystallogr A 47: 110-119.
    • (1991) Acta Crystallogr A , vol.47 , pp. 110-119
    • Jones, T.A.1    Zou, J.Y.2    Cowan, S.W.3    Kjeldgaard, M.4
  • 35
    • 20444368818 scopus 로고    scopus 로고
    • RNA degradation by the exosome is promoted by a nuclear polyadenylation complex
    • DOI 10.1016/j.cell.2005.04.029, PII S0092867405004423
    • LaCava J, Houseley J, Saveanu C, Petfalski E, Thompson E, Jacquier A, Tollervey D. 2005. RNA degradation by the exosome is promoted by a nuclear polyadenylation complex. Cell 121: 713-724. (Pubitemid 40797594)
    • (2005) Cell , vol.121 , Issue.5 , pp. 713-724
    • LaCava, J.1    Houseley, J.2    Saveanu, C.3    Petfalski, E.4    Thompson, E.5    Jacquier, A.6    Tollervey, D.7
  • 36
    • 0000243829 scopus 로고
    • Procheck - A program to check the stereochemical quality of protein structures
    • Laskowski RA, Macarthur MW, Moss DS, Thornton JM. 1993. Procheck - a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26: 283-291.
    • (1993) J Appl Crystallogr , vol.26 , pp. 283-291
    • Laskowski, R.A.1    Macarthur, M.W.2    Moss, D.S.3    Thornton, J.M.4
  • 37
    • 50849118813 scopus 로고    scopus 로고
    • Exosome-mediated quality control: Substrate recruitment and molecular activity
    • Lebreton A, Seraphin B. 2008. Exosome-mediated quality control: Substrate recruitment and molecular activity. Biochim Biophys Acta 1779: 558-565.
    • (2008) Biochim Biophys Acta , vol.1779 , pp. 558-565
    • Lebreton, A.1    Seraphin, B.2
  • 38
    • 57749189164 scopus 로고    scopus 로고
    • Endonucleolytic RNA cleavage by a eukaryotic exosome
    • Lebreton A, Tomecki R, Dziembowski A, Seraphin B. 2008. Endonucleolytic RNA cleavage by a eukaryotic exosome. Nature 456: 993-996.
    • (2008) Nature , vol.456 , pp. 993-996
    • Lebreton, A.1    Tomecki, R.2    Dziembowski, A.3    Seraphin, B.4
  • 39
    • 33845407784 scopus 로고    scopus 로고
    • Reconstitution, Activities, and Structure of the Eukaryotic RNA Exosome
    • DOI 10.1016/j.cell.2006.10.037, PII S0092867406014279
    • Liu Q, Greimann JC, Lima CD. 2006. Reconstitution, activities, and structure of the eukaryotic RNA exosome. Cell 127: 1223-1237. (Pubitemid 44894519)
    • (2006) Cell , vol.127 , Issue.6 , pp. 1223-1237
    • Liu, Q.1    Greimann, J.C.2    Lima, C.D.3
  • 41
    • 57049152286 scopus 로고    scopus 로고
    • Structural organization of the RNA-degrading exosome
    • Lorentzen E, Basquin J, Conti E. 2008a. Structural organization of the RNA-degrading exosome. Curr Opin Struct Biol 18: 709-713.
    • (2008) Curr Opin Struct Biol , vol.18 , pp. 709-713
    • Lorentzen, E.1    Basquin, J.2    Conti, E.3
  • 42
    • 40849106786 scopus 로고    scopus 로고
    • Structure of the Active Subunit of the Yeast Exosome Core, Rrp44: Diverse Modes of Substrate Recruitment in the RNase II Nuclease Family
    • DOI 10.1016/j.molcel.2008.02.018, PII S1097276508001627
    • Lorentzen E, Basquin J, Tomecki R, Dziembowski A, Conti E. 2008b. Structure of the active subunit of the yeast exosome core, Rrp44: Diverse modes of substrate recruitment in the RNase II nuclease family. Mol Cell 29: 717-728. (Pubitemid 351400929)
    • (2008) Molecular Cell , vol.29 , Issue.6 , pp. 717-728
    • Lorentzen, E.1    Basquin, J.2    Tomecki, R.3    Dziembowski, A.4    Conti, E.5
  • 43
  • 44
    • 85011942140 scopus 로고    scopus 로고
    • The eukaryotic RNA exosome: Same scaffold but variable catalytic subunits
    • Lykke-Andersen S, Tomecki R, Jensen TH, Dziembowski A. 2011. The eukaryotic RNA exosome: Same scaffold but variable catalytic subunits. RNA Biol 8: 61-66.
    • (2011) RNA Biol , vol.8 , pp. 61-66
    • Lykke-Andersen, S.1    Tomecki, R.2    Jensen, T.H.3    Dziembowski, A.4
  • 45
    • 34447502176 scopus 로고    scopus 로고
    • Novel aspects of autoantibodies to the PM/Scl complex: Clinical, genetic and diagnostic insights
    • DOI 10.1016/j.autrev.2007.01.013, PII S1568997207000249
    • Mahler M, Raijmakers R. 2007. Novel aspects of autoantibodies to the PM/Scl complex: Clinical, genetic and diagnostic insights. Autoimmun Rev 6: 432-437. (Pubitemid 47069969)
    • (2007) Autoimmunity Reviews , vol.6 , Issue.7 , pp. 432-437
    • Mahler, M.1    Raijmakers, R.2
  • 46
    • 33747041640 scopus 로고    scopus 로고
    • Structure of the nuclear exosome component Rrp6p reveals an interplay between the active site and the HRDC domain
    • Midtgaard SF, Assenholt J, Jonstrup AT, Van LB, Jensen TH, Brodersen DE. 2006. Structure of the nuclear exosome component Rrp6p reveals an interplay between the active site and the HRDC domain. Proc Natl Acad Sci 103: 11898-11903.
    • (2006) Proc Natl Acad Sci , vol.103 , pp. 11898-11903
    • Midtgaard, S.F.1    Assenholt, J.2    Jonstrup, A.T.3    Van, L.B.4    Jensen, T.H.5    Brodersen, D.E.6
  • 47
    • 0037762554 scopus 로고    scopus 로고
    • An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3′→5′ degradation
    • DOI 10.1016/S1097-2765(03)00190-4
    • Mitchell P, Tollervey D. 2003. An NMD pathway in yeast involving accelerated deadenylation and exosome-mediated 3′ → 5′ degradation. Mol Cell 11: 1405-1413. (Pubitemid 36645158)
    • (2003) Molecular Cell , vol.11 , Issue.5 , pp. 1405-1413
    • Mitchell, P.1    Tollervey, D.2
  • 48
    • 0030702085 scopus 로고    scopus 로고
    • The exosome: A conserved eukaryotic RNA processing complex containing multiple 3'→5' exoribonucleases
    • Mitchell P, Petfalski E, Shevchenko A, Mann M, Tollervey D. 1997. The exosome: A conserved eukaryotic RNA processing complex containing multiple 3′ → 5′ exoribonucleases. Cell 91: 457-466. (Pubitemid 27508235)
    • (1997) Cell , vol.91 , Issue.4 , pp. 457-466
    • Mitchell, P.1    Petfalski, E.2    Shevchenko, A.3    Mann, M.4    Tollervey, D.5
  • 50
    • 0030697336 scopus 로고    scopus 로고
    • A putative nucleic acid-binding domain in Bloom's and Werner's syndrome helicases
    • DOI 10.1016/S0968-0004(97)01128-6, PII S0968000497011286
    • Morozov V, Mushegian AR, Koonin EV, Bork P. 1997. A putative nucleic acid-binding domain in Bloom's and Werner's syndrome helicases. Trends Biochem Sci 22: 417-418. (Pubitemid 27508783)
    • (1997) Trends in Biochemical Sciences , vol.22 , Issue.11 , pp. 417-418
    • Morozov, V.1    Mushegian, A.R.2    Koonin, E.V.3    Bork, P.4
  • 51
    • 0033638223 scopus 로고    scopus 로고
    • Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast
    • Mossessova E, Lima CD. 2000. Ulp1-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast. Mol Cell 5: 865-876.
    • (2000) Mol Cell , vol.5 , pp. 865-876
    • Mossessova, E.1    Lima, C.D.2
  • 52
    • 0021984004 scopus 로고
    • Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP
    • DOI 10.1038/313762a0
    • Ollis DL, Brick P, Hamlin R, Xuong NG, Steitz TA. 1985a. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature 313: 762-766. (Pubitemid 15130824)
    • (1985) Nature , vol.313 , Issue.6005 , pp. 762-766
    • Ollis, D.L.1    Brick, P.2    Hamlin, R.3
  • 53
    • 0021992794 scopus 로고
    • Domain of E. coli DNA polymerase I showing sequence homology to T7 DNA polymerase
    • Ollis DL, Kline C, Steitz TA. 1985b. Domain of E. coli DNA polymerase I showing sequence homology to T7 DNA polymerase. Nature 313: 818-819.
    • (1985) Nature , vol.313 , pp. 818-819
    • Ollis, D.L.1    Kline, C.2    Steitz, T.A.3
  • 54
    • 0031059866 scopus 로고    scopus 로고
    • Processing of X-ray diffraction data collected in oscillation mode
    • DOI 10.1016/S0076-6879(97)76066-X
    • Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276: 307-326. (Pubitemid 27085611)
    • (1997) Methods in Enzymology , vol.276 , pp. 307-326
    • Otwinowski, Z.1    Minor, W.2
  • 55
    • 0042834089 scopus 로고    scopus 로고
    • Contribution of domain structure to the RNA 3′ end processing and degradation functions of the nuclear exosome subunit Rrp6p
    • DOI 10.1261/rna.5560903
    • Phillips S, Butler JS. 2003. Contribution of domain structure to the RNA 3′ end processing and degradation functions of the nuclear exosome subunit Rrp6p. RNA 9: 1098-1107. (Pubitemid 37093619)
    • (2003) RNA , vol.9 , Issue.9 , pp. 1098-1107
    • Phillips, S.1    Butler, J.S.2
  • 56
    • 34249025702 scopus 로고    scopus 로고
    • Contribution of Trf4/5 and the nuclear exosome to genome stability through regulation of histone mRNA levels in Saccharomyces cerevisiae
    • DOI 10.1534/genetics.106.065987
    • Reis CC, Campbell JL. 2007. Contribution of Trf4/5 and the nuclear exosome to genome stability through regulation of histone mRNA levels in Saccharomyces cerevisiae. Genetics 175: 993-1010. (Pubitemid 46798207)
    • (2007) Genetics , vol.175 , Issue.3 , pp. 993-1010
    • Reis, C.C.1    Campbell, J.L.2
  • 58
    • 34250339672 scopus 로고    scopus 로고
    • C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing
    • DOI 10.1093/nar/gkm082
    • Schilders G, van Dijk E, Pruijn GJ. 2007. C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing. Nucleic Acids Res 35: 2564-2572. (Pubitemid 47073670)
    • (2007) Nucleic Acids Research , vol.35 , Issue.8 , pp. 2564-2572
    • Schilders, G.1    Van Dijk, E.2    Pruijn, G.J.M.3
  • 59
    • 52949089292 scopus 로고    scopus 로고
    • The exosome: A multipurpose RNA-decay machine
    • Schmid M, Jensen TH. 2008. The exosome: a multipurpose RNA-decay machine. Trends Biochem Sci 33: 501-510.
    • (2008) Trends Biochem Sci , vol.33 , pp. 501-510
    • Schmid, M.1    Jensen, T.H.2
  • 60
    • 34447300418 scopus 로고    scopus 로고
    • The Exosome Subunit Rrp44 Plays a Direct Role in RNA Substrate Recognition
    • DOI 10.1016/j.molcel.2007.06.006, PII S109727650700370X
    • Schneider C, Anderson JT, Tollervey D. 2007. The exosome subunit Rrp44 plays a direct role in RNA substrate recognition. Mol Cell 27: 324-331. (Pubitemid 47058304)
    • (2007) Molecular Cell , vol.27 , Issue.2 , pp. 324-331
    • Schneider, C.1    Anderson, J.T.2    Tollervey, D.3
  • 61
    • 62049085366 scopus 로고    scopus 로고
    • The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome
    • Schneider C, Leung E, Brown J, Tollervey D. 2009. The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 37: 1127-1140.
    • (2009) Nucleic Acids Res , vol.37 , pp. 1127-1140
    • Schneider, C.1    Leung, E.2    Brown, J.3    Tollervey, D.4
  • 63
    • 34548712987 scopus 로고    scopus 로고
    • The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid-binding protein
    • DOI 10.1093/nar/gkm614
    • Stead JA, Costello JL, Livingstone MJ, Mitchell P. 2007. The PMC2NT domain of the catalytic exosome subunit Rrp6p provides the interface for binding with its cofactor Rrp47p, a nucleic acid-binding protein. Nucleic Acids Res 35: 5556-5567. (Pubitemid 47430457)
    • (2007) Nucleic Acids Research , vol.35 , Issue.16 , pp. 5556-5567
    • Stead, J.A.1    Costello, J.L.2    Livingstone, M.J.3    Mitchell, P.4
  • 65
    • 0034435974 scopus 로고    scopus 로고
    • A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation
    • DOI 10.1016/S0969-2126(00)00521-9, PII S0969212600005219
    • Symmons MF, Jones GH, Luisi BF. 2000. A duplicated fold is the structural basis for polynucleotide phosphorylase catalytic activity, processivity, and regulation. Structure 8: 1215-1226. (Pubitemid 32667486)
    • (2000) Structure , vol.8 , Issue.11 , pp. 1215-1226
    • Symmons, M.F.1    Jones, G.H.2    Luisi, B.F.3
  • 66
    • 0027968068 scopus 로고
    • CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
    • Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680. (Pubitemid 24354800)
    • (1994) Nucleic Acids Research , vol.22 , Issue.22 , pp. 4673-4680
    • Thompson, J.D.1    Higgins, D.G.2    Gibson, T.J.3
  • 67
    • 77956034926 scopus 로고    scopus 로고
    • Novel endoribonucleases as central players in various pathways of eukaryotic RNA metabolism
    • Tomecki R, Dziembowski A. 2010. Novel endoribonucleases as central players in various pathways of eukaryotic RNA metabolism. RNA 16: 1692-1724.
    • (2010) RNA , vol.16 , pp. 1692-1724
    • Tomecki, R.1    Dziembowski, A.2
  • 70
    • 0033981301 scopus 로고    scopus 로고
    • Yeast exosome mutants accumulate 3'-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs
    • DOI 10.1128/MCB.20.2.441-452.2000
    • van Hoof A, Lennertz P, Parker R. 2000. Yeast exosome mutants accumulate 3′-extended polyadenylated forms of U4 small nuclear RNA and small nucleolar RNAs. Mol Cell Biol 20: 441-452. (Pubitemid 30023085)
    • (2000) Molecular and Cellular Biology , vol.20 , Issue.2 , pp. 441-452
    • Van Hoof, A.1    Lennertz, P.2    Parker, R.3
  • 72
    • 37849048952 scopus 로고    scopus 로고
    • Global role for polyadenylation-assisted nuclear RNA degradation in posttranscriptional gene silencing
    • Wang SW, Stevenson AL, Kearsey SE, Watt S, Bahler J. 2008a. Global role for polyadenylation-assisted nuclear RNA degradation in posttranscriptional gene silencing. Mol Cell Biol 28: 656-665.
    • (2008) Mol Cell Biol , vol.28 , pp. 656-665
    • Wang, S.W.1    Stevenson, A.L.2    Kearsey, S.E.3    Watt, S.4    Bahler, J.5
  • 73
    • 38049069276 scopus 로고    scopus 로고
    • Degradation of hypomodified tRNA(iMet) in vivo involves RNA-dependent ATPase activity of the DExH helicase Mtr4p
    • Wang X, Jia H, Jankowsky E, Anderson JT. 2008b. Degradation of hypomodified tRNA(iMet) in vivo involves RNA-dependent ATPase activity of the DExH helicase Mtr4p. RNA 14: 107-116.
    • (2008) RNA , vol.14 , pp. 107-116
    • Wang, X.1    Jia, H.2    Jankowsky, E.3    Anderson, J.T.4
  • 75
    • 21744450431 scopus 로고    scopus 로고
    • Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing
    • DOI 10.1016/j.str.2005.04.015, PII S0969212605001802
    • Zuo Y, Wang Y, Malhotra A. 2005. Crystal structure of Escherichia coli RNase D, an exoribonuclease involved in structured RNA processing. Structure 13: 973-984. (Pubitemid 40943329)
    • (2005) Structure , vol.13 , Issue.7 , pp. 973-984
    • Zuo, Y.1    Wang, Y.2    Malhotra, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.