-
2
-
-
13644266460
-
On a classification of irreducible almost commutative geometries
-
Iochum B., Schücker T., Stephan C. On a classification of irreducible almost commutative geometries. J. Math. Phys. 2004, 45:5003-5041.
-
(2004)
J. Math. Phys.
, vol.45
, pp. 5003-5041
-
-
Iochum, B.1
Schücker, T.2
Stephan, C.3
-
4
-
-
0002152071
-
Deformation quantization for actions of Rd
-
Rieffel M.A. Deformation quantization for actions of Rd. Mem. Amer. Math. Soc. 1993, 506.
-
(1993)
Mem. Amer. Math. Soc.
, vol.506
-
-
Rieffel, M.A.1
-
5
-
-
0000481618
-
Quantum groups
-
Berkeley
-
Drinfeld V.G. Quantum groups. Proc. of the ICM 1986, vol. 1:798-820. Berkeley.
-
(1986)
Proc. of the ICM
, vol.1
, pp. 798-820
-
-
Drinfeld, V.G.1
-
6
-
-
0040323775
-
A q-difference analogue of U(g) and the Yang-Baxter equation
-
Jimbo M. A q-difference analogue of U(g) and the Yang-Baxter equation. Lett. Math. Phys. 1985, 10:63-69.
-
(1985)
Lett. Math. Phys.
, vol.10
, pp. 63-69
-
-
Jimbo, M.1
-
7
-
-
0000595944
-
Noncommutative manifolds: the instanton algebra and isospectral deformations
-
Connes A., Landi G. Noncommutative manifolds: the instanton algebra and isospectral deformations. Comm. Math. Phys. 2001, 221:141-159.
-
(2001)
Comm. Math. Phys.
, vol.221
, pp. 141-159
-
-
Connes, A.1
Landi, G.2
-
8
-
-
0036026977
-
Noncommutative finite-dimensional manifolds I. Spherical manifolds and related examples
-
Connes A., Dubois-Violette M. Noncommutative finite-dimensional manifolds I. Spherical manifolds and related examples. Comm. Math. Phys. 2002, 230:539-579.
-
(2002)
Comm. Math. Phys.
, vol.230
, pp. 539-579
-
-
Connes, A.1
Dubois-Violette, M.2
-
9
-
-
0003277387
-
The metric aspect of noncommutative geometry
-
Plenum, New York, New Symmetry Principles in Quantum Field Theory, Cargèse 1991
-
Connes A., Lott J. The metric aspect of noncommutative geometry. NATO Ad. Sci. Inst. Ser. B Phys. 1992, vol. 295:53-93. Plenum, New York.
-
(1992)
NATO Ad. Sci. Inst. Ser. B Phys.
, vol.295
, pp. 53-93
-
-
Connes, A.1
Lott, J.2
-
10
-
-
62549099628
-
On the spectral characterization of manifolds
-
[math.OA].
-
A. Connes, On the spectral characterization of manifolds, [math.OA]. arxiv:0810.2088.
-
-
-
Connes, A.1
-
11
-
-
84896062376
-
A view on optimal transport from noncommutative geometry
-
D'Andrea F., Martinetti P. A view on optimal transport from noncommutative geometry. SIGMA 2010, 6:057.
-
(2010)
SIGMA
, vol.6
, pp. 057
-
-
D'Andrea, F.1
Martinetti, P.2
-
12
-
-
0003051136
-
Distances in finite spaces from noncommutative geometry
-
Iochum B., Krajewski T., Martinetti P. Distances in finite spaces from noncommutative geometry. J. Geom. Phys. 2001, 37(1-2):100-125.
-
(2001)
J. Geom. Phys.
, vol.37
, Issue.1-2
, pp. 100-125
-
-
Iochum, B.1
Krajewski, T.2
Martinetti, P.3
-
13
-
-
0000533661
-
Distances on a lattice from non-commutative geometry
-
Bimonte G., Lizzi F., Sparano G. Distances on a lattice from non-commutative geometry. Phys. Lett. 1994, B341:139-146.
-
(1994)
Phys. Lett.
, vol.B341
, pp. 139-146
-
-
Bimonte, G.1
Lizzi, F.2
Sparano, G.3
-
14
-
-
33745315388
-
Carnot-Carathéodory metric from gauge fluctuation in noncommutative geometry
-
Martinetti P. Carnot-Carathéodory metric from gauge fluctuation in noncommutative geometry. Comm. Math. Phys. 2006, 265:585-616.
-
(2006)
Comm. Math. Phys.
, vol.265
, pp. 585-616
-
-
Martinetti, P.1
-
15
-
-
0035981956
-
Discrete Kaluza Klein from scalar fluctuations in non-commutative geometry
-
Martinetti P., Wulkenhaar R. Discrete Kaluza Klein from scalar fluctuations in non-commutative geometry. J. Math. Phys. 2002, 43:182-204.
-
(2002)
J. Math. Phys.
, vol.43
, pp. 182-204
-
-
Martinetti, P.1
Wulkenhaar, R.2
-
16
-
-
50649122514
-
Spectral distance on the circle
-
Martinetti P. Spectral distance on the circle. J. Funct. Anal. 2008, 255:1575-1612.
-
(2008)
J. Funct. Anal.
, vol.255
, pp. 1575-1612
-
-
Martinetti, P.1
-
17
-
-
2442626689
-
Moyal planes are spectral triples
-
Gayral V., Gracia-Bondía J.M., Iochum B., Schücker T., Várilly J.C. Moyal planes are spectral triples. Comm. Math. Phys. 2004, 246:569-623.
-
(2004)
Comm. Math. Phys.
, vol.246
, pp. 569-623
-
-
Gayral, V.1
Gracia-Bondía, J.M.2
Iochum, B.3
Schücker, T.4
Várilly, J.C.5
-
18
-
-
34547163935
-
Bounded-Lipschitz distances on the state space of a C*-algebra
-
Latrémolière F. Bounded-Lipschitz distances on the state space of a C*-algebra. Taiwanese J. Math. 2007, 11(2):447-469.
-
(2007)
Taiwanese J. Math.
, vol.11
, Issue.2
, pp. 447-469
-
-
Latrémolière, F.1
-
19
-
-
79960346815
-
-
Dynamical systems on spectral metric spaces, [math.OA].
-
J.V. Bellissard, M. Marcolli, K. Reihani, Dynamical systems on spectral metric spaces, 2010, [math.OA]. arxiv:1008.4617.
-
(2010)
-
-
Bellissard, J.V.1
Marcolli, M.2
Reihani, K.3
-
20
-
-
0000176173
-
Metric on state spaces
-
Rieffel M.A. Metric on state spaces. Doc. Math. 1999, 4:559-600.
-
(1999)
Doc. Math.
, vol.4
, pp. 559-600
-
-
Rieffel, M.A.1
-
21
-
-
30444446364
-
Compact quantum metric spaces
-
AMS, Providence, RI, Operator Algebras, Quantization, and Noncommutative Geometry
-
Rieffel M.A. Compact quantum metric spaces. Contemp. Math. 2004, vol. 365:315-330. AMS, Providence, RI.
-
(2004)
Contemp. Math.
, vol.365
, pp. 315-330
-
-
Rieffel, M.A.1
-
22
-
-
36549090874
-
Algebras of distributions suitable for phase-space quantum mechanics. I
-
Gracia-Bondía J.M., Várilly J.C. Algebras of distributions suitable for phase-space quantum mechanics. I. J. Math. Phys. 1988, 29(4):869-879.
-
(1988)
J. Math. Phys.
, vol.29
, Issue.4
, pp. 869-879
-
-
Gracia-Bondía, J.M.1
Várilly, J.C.2
-
23
-
-
36549100229
-
Algebras of distributions suitable for phase-space quantum mechanics. II
-
Gracia-Bondía J.M., Várilly J.C. Algebras of distributions suitable for phase-space quantum mechanics. II. J. Math. Phys. 1988, 29(4):880-887.
-
(1988)
J. Math. Phys.
, vol.29
, Issue.4
, pp. 880-887
-
-
Gracia-Bondía, J.M.1
Várilly, J.C.2
-
24
-
-
17444364853
-
The spectral action for Moyal planes
-
Gayral V., Iochum B. The spectral action for Moyal planes. J. Math. Phys. 2005, 46:043503.
-
(2005)
J. Math. Phys.
, vol.46
, pp. 043503
-
-
Gayral, V.1
Iochum, B.2
-
25
-
-
78650903525
-
Noncommutative Yang-Mills-Higgs actions from derivation based differential calculus
-
Cagnache E., Masson T., Wallet J.C. Noncommutative Yang-Mills-Higgs actions from derivation based differential calculus. J. Noncommut. Geom. 2011, 5:39-67.
-
(2011)
J. Noncommut. Geom.
, vol.5
, pp. 39-67
-
-
Cagnache, E.1
Masson, T.2
Wallet, J.C.3
-
26
-
-
77954206253
-
Derivations of the Moyal algebra and noncommutative gauge theories
-
Wallet J.C. Derivations of the Moyal algebra and noncommutative gauge theories. SIGMA 2009, 5:013.
-
(2009)
SIGMA
, vol.5
, pp. 013
-
-
Wallet, J.C.1
-
28
-
-
84952911698
-
Quantum mechanics as a statistical theory
-
Moyal J.E. Quantum mechanics as a statistical theory. Proc. Cambridge Philos. Soc. 1949, 45:99-124.
-
(1949)
Proc. Cambridge Philos. Soc.
, vol.45
, pp. 99-124
-
-
Moyal, J.E.1
-
29
-
-
33745040449
-
On the principles of elementary quantum mechanics
-
Groenewold H.J. On the principles of elementary quantum mechanics. Physica 1946, 12:405-460.
-
(1946)
Physica
, vol.12
, pp. 405-460
-
-
Groenewold, H.J.1
-
30
-
-
78649692983
-
Quantum geometry on quantum spacetime: distance, area and volume operators
-
[hep-th].
-
D. Bahns, S. Doplicher, K. Fredenhagen, G. Piacitelli, Quantum geometry on quantum spacetime: distance, area and volume operators, [hep-th]. arxiv:1005.2130.
-
-
-
Bahns, D.1
Doplicher, S.2
Fredenhagen, K.3
Piacitelli, G.4
-
32
-
-
79960348928
-
Minimal length in quantum space and integration of the line element in noncommutative geometry
-
preprint, .
-
P. Martinetti, F. Mercati, L. Tomasini, Minimal length in quantum space and integration of the line element in noncommutative geometry, preprint, arxiv:1106.0261.
-
-
-
Martinetti, P.1
Mercati, F.2
Tomasini, L.3
-
33
-
-
17744376433
-
Renormalisation of φ4-theory on noncommutative R4 in the matrix base
-
Grosse H., Wulkenhaar R. Renormalisation of φ4-theory on noncommutative R4 in the matrix base. Comm. Math. Phys. 2005, 256:305-374.
-
(2005)
Comm. Math. Phys.
, vol.256
, pp. 305-374
-
-
Grosse, H.1
Wulkenhaar, R.2
-
34
-
-
31744433769
-
Renormalization of noncommutative phi 4-theory by multi-scale analysis
-
Rivasseau V., Vignes-Tourneret F., Wulkenhaar R. Renormalization of noncommutative phi 4-theory by multi-scale analysis. Comm. Math. Phys. 2006, 262:565-594.
-
(2006)
Comm. Math. Phys.
, vol.262
, pp. 565-594
-
-
Rivasseau, V.1
Vignes-Tourneret, F.2
Wulkenhaar, R.3
-
35
-
-
21844496057
-
Noncommutative geometry and reality
-
Connes A. Noncommutative geometry and reality. J. Math. Phys. 1995, 36:6194-6231.
-
(1995)
J. Math. Phys.
, vol.36
, pp. 6194-6231
-
-
Connes, A.1
-
36
-
-
67650538964
-
Complete positivity of Rieffel's deformation quantization by actions of Rd
-
Kaschek D., Neumaier N., Waldmann S. Complete positivity of Rieffel's deformation quantization by actions of Rd. J. Noncommut. Geom. 2009, 3:361-375.
-
(2009)
J. Noncommut. Geom.
, vol.3
, pp. 361-375
-
-
Kaschek, D.1
Neumaier, N.2
Waldmann, S.3
-
37
-
-
35348966113
-
Operator algebras. Theory of C*-algebras and von Neumann algebras
-
Blackadar B. Operator algebras. Theory of C*-algebras and von Neumann algebras. Encyclopaedia Math. Sci. 2006, 122.
-
(2006)
Encyclopaedia Math. Sci.
, vol.122
-
-
Blackadar, B.1
-
39
-
-
1342305282
-
Gromov-Hausdorff distance for quantum metric spaces. Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance
-
Rieffel M.A. Gromov-Hausdorff distance for quantum metric spaces. Matrix algebras converge to the sphere for quantum Gromov-Hausdorff distance. Mem. Amer. Math. Soc. 2004, 168(796):1-65.
-
(2004)
Mem. Amer. Math. Soc.
, vol.168
, Issue.796
, pp. 1-65
-
-
Rieffel, M.A.1
-
43
-
-
0003249219
-
A representation theory for commutative topological algebra
-
Kadison R.V. A representation theory for commutative topological algebra. Mem. Amer. Math. Soc. 1951, 7.
-
(1951)
Mem. Amer. Math. Soc.
, vol.7
-
-
Kadison, R.V.1
-
44
-
-
33750394813
-
Spectral triples for AF C*-algebras and metrics on the Cantor set
-
Christensen E., Ivan C. Spectral triples for AF C*-algebras and metrics on the Cantor set. J. Oper. Theory 2006, 56:1:17-46.
-
(2006)
J. Oper. Theory
, pp. 17-46
-
-
Christensen, E.1
Ivan, C.2
|