메뉴 건너뛰기




Volumn 199, Issue 2, 2011, Pages 336-345

Sparse geostatistical analysis in clustering fMRI time series

Author keywords

Autocovariance; Data driven analysis; LASSO; Silhouette values

Indexed keywords

ARTICLE; BRAIN FUNCTION; CLUSTER ANALYSIS; CONTROLLED STUDY; FUNCTIONAL MAGNETIC RESONANCE IMAGING; GEOSTATISTICAL ANALYSIS; HEMODYNAMICS; PRIORITY JOURNAL; SPARSE PRINCIPAL COMPONENT ANALYSIS; TASK PERFORMANCE; TIME SERIES ANALYSIS;

EID: 79960255002     PISSN: 01650270     EISSN: 1872678X     Source Type: Journal    
DOI: 10.1016/j.jneumeth.2011.05.016     Document Type: Article
Times cited : (14)

References (34)
  • 1
    • 0032986174 scopus 로고    scopus 로고
    • Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework
    • Andersen A.H., Gash D.M., Avison M.J. Principal component analysis of the dynamic response measured by fMRI: a generalized linear systems framework. Magnetic Resonance Imaging 1999, 17:795-815.
    • (1999) Magnetic Resonance Imaging , vol.17 , pp. 795-815
    • Andersen, A.H.1    Gash, D.M.2    Avison, M.J.3
  • 2
    • 0034092755 scopus 로고    scopus 로고
    • Geostatistical classification for remote sensing: an introduction
    • Atkinson P.M., Lewis P. Geostatistical classification for remote sensing: an introduction. Computers and Geostatistics 2000, 26:361-371.
    • (2000) Computers and Geostatistics , vol.26 , pp. 361-371
    • Atkinson, P.M.1    Lewis, P.2
  • 4
    • 0038440741 scopus 로고    scopus 로고
    • Cluster analysis of BOLD fMRI time series in tumors to study the heterogeneity of hemodynamic response to treatment
    • Baudelet C., Gallez B. Cluster analysis of BOLD fMRI time series in tumors to study the heterogeneity of hemodynamic response to treatment. Magnetic Resonance in Medicine 2003, 49:985-990.
    • (2003) Magnetic Resonance in Medicine , vol.49 , pp. 985-990
    • Baudelet, C.1    Gallez, B.2
  • 5
    • 4344583045 scopus 로고    scopus 로고
    • Methods for detecting functional classifications in neuroimaging data
    • Bowman F.D., Patel R., Lu C. Methods for detecting functional classifications in neuroimaging data. Human Brain Mapping 2004, 23:109-119.
    • (2004) Human Brain Mapping , vol.23 , pp. 109-119
    • Bowman, F.D.1    Patel, R.2    Lu, C.3
  • 6
    • 0344983772 scopus 로고    scopus 로고
    • Latency in sensitive ICA group independent component analysis of fMRI data in the temporal frequency domain
    • Calhoun V.D., Adli T., Pekar J.J., Pearlson G.D. Latency in sensitive ICA group independent component analysis of fMRI data in the temporal frequency domain. NeuroImage 2003, 20:1661-1669.
    • (2003) NeuroImage , vol.20 , pp. 1661-1669
    • Calhoun, V.D.1    Adli, T.2    Pekar, J.J.3    Pearlson, G.D.4
  • 7
    • 0037396577 scopus 로고    scopus 로고
    • Optimal spline smoothing of fMRI time series by generalized cross-validation
    • Carew J.D., Wahba G., Xie X., Nordheim E.V., Meyrand M.E. Optimal spline smoothing of fMRI time series by generalized cross-validation. NeuroImage 2003, 18:950-961.
    • (2003) NeuroImage , vol.18 , pp. 950-961
    • Carew, J.D.1    Wahba, G.2    Xie, X.3    Nordheim, E.V.4    Meyrand, M.E.5
  • 8
    • 55149117963 scopus 로고    scopus 로고
    • Prediction and interpretation of distributed neural activity with sparse models
    • Carroll M.K., Cecchi G.A., Rish I., Garg R., Rao A.R. Prediction and interpretation of distributed neural activity with sparse models. NeuroImage 2009, 44:112-122.
    • (2009) NeuroImage , vol.44 , pp. 112-122
    • Carroll, M.K.1    Cecchi, G.A.2    Rish, I.3    Garg, R.4    Rao, A.R.5
  • 9
    • 84937549955 scopus 로고
    • The scree test for the number of factors
    • Cattell E.M. The scree test for the number of factors. Multivariate Behavioral Research 1966, 1:245-276.
    • (1966) Multivariate Behavioral Research , vol.1 , pp. 245-276
    • Cattell, E.M.1
  • 11
    • 0033855255 scopus 로고    scopus 로고
    • A multistep unsupervised fuzzy clustering analysis of fMRI time series
    • Fadili M.J., Ruan S., Bloyet D., Mazoyer B. A multistep unsupervised fuzzy clustering analysis of fMRI time series. Human Brain Mapping 2000, 10:160-178.
    • (2000) Human Brain Mapping , vol.10 , pp. 160-178
    • Fadili, M.J.1    Ruan, S.2    Bloyet, D.3    Mazoyer, B.4
  • 13
    • 0036334830 scopus 로고    scopus 로고
    • Thresholding of statistical maps in functional neuroimaging using the false discovery rate
    • Genovese C.R., Lazar N.A., Nichols T. Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage 2002, 15:870-878.
    • (2002) NeuroImage , vol.15 , pp. 870-878
    • Genovese, C.R.1    Lazar, N.A.2    Nichols, T.3
  • 22
    • 0035184165 scopus 로고    scopus 로고
    • Visual analysis of variance: a tool for quantitative assessment of fMRI data processing and analysis
    • McNamee R.L., Eddy W.F. Visual analysis of variance: a tool for quantitative assessment of fMRI data processing and analysis. Magnetic Resonance in Medicine 2001, 46:1202-1208.
    • (2001) Magnetic Resonance in Medicine , vol.46 , pp. 1202-1208
    • McNamee, R.L.1    Eddy, W.F.2
  • 25
    • 0023453329 scopus 로고
    • Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
    • Rousseeuw P.J. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. Journal of Computational and Applied Mathematics 1987, 20:53-65.
    • (1987) Journal of Computational and Applied Mathematics , vol.20 , pp. 53-65
    • Rousseeuw, P.J.1
  • 27
    • 0242679438 scopus 로고    scopus 로고
    • Finding the number of clusters in a data set: an information theoretic approach
    • Sugar C., James G. Finding the number of clusters in a data set: an information theoretic approach. Journal of the American Statistical Association 2003, 98:750-763.
    • (2003) Journal of the American Statistical Association , vol.98 , pp. 750-763
    • Sugar, C.1    James, G.2
  • 31
    • 34249010475 scopus 로고    scopus 로고
    • Ellipsoidal support vector clustering for functional MRI analysis
    • Wang D., Shi L., Yeung D.S., Tsang E.C.C., Heng P.A. Ellipsoidal support vector clustering for functional MRI analysis. Pattern Recognition 2007, 40:2685-2695.
    • (2007) Pattern Recognition , vol.40 , pp. 2685-2695
    • Wang, D.1    Shi, L.2    Yeung, D.S.3    Tsang, E.C.C.4    Heng, P.A.5
  • 33
    • 69949091330 scopus 로고    scopus 로고
    • Geostatistical analysis in clustering fMRI time series
    • Ye J., Lazar N.A., Li Y. Geostatistical analysis in clustering fMRI time series. Statistics in Medicine 2009, 28:2490-2508.
    • (2009) Statistics in Medicine , vol.28 , pp. 2490-2508
    • Ye, J.1    Lazar, N.A.2    Li, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.