-
1
-
-
33748297453
-
The computational complexity of knot genus and spanning area
-
DOI 10.1090/S0002-9947-05-03919-X, PII S000299470503919X
-
AGOL, I., HASS, J., AND THURSTON, W. The computational complexity of knot genus and spanning area. Trans. Amer. Math. Soc. 358, 9 (2006), 3821-3850. arXiv:math.GT/0205057, doi:10.1090/S0002-9947-05-03919-X. (Pubitemid 44328543)
-
(2006)
Transactions of the American Mathematical Society
, vol.358
, Issue.9
, pp. 3821-3850
-
-
Agol, I.1
Hass, J.2
Thurston, W.3
-
2
-
-
77954921903
-
The complexity of the normal surface solution space
-
New York, NY, USA, ACM, doi:10.1145/1810959.1810995
-
BURTON, B. A. The complexity of the normal surface solution space. In SoCG '10: Proceedings of the 2010 annual symposiumon computational geometry (New York, NY, USA, 2010), ACM, pp. 201-209. doi:10.1145/1810959.1810995.
-
(2010)
SoCG '10: Proceedings of the 2010 Annual Symposiumon Computational Geometry
, pp. 201-209
-
-
Burton, B.A.1
-
4
-
-
72949098392
-
Optimizing the double descriptionmethod for normal surface enumeration
-
doi:10.1090/S0025-5718-09-02282-0
-
BURTON, B. A. Optimizing the double descriptionmethod for normal surface enumeration. Math. Comp. 79, 269 (2010), 453-484. doi:10.1090/S0025-5718-09- 02282-0.
-
(2010)
Math. Comp.
, vol.79
, Issue.269
, pp. 453-484
-
-
Burton, B.A.1
-
7
-
-
77954735165
-
Optimal homologous cycles, total unimodularity, and linear programming
-
New York, NY, USA, June 6-8, ACM. Also available as preprint arXiv:1001.0338v1 [math.AT] on. http://doi.acm.org/10.1145/1806689.1806721,arXiv 1001.0338, doi:10.1145/1806689.1806721 2010
-
DEY, T. K., HIRANI, A. N., AND KRISHNAMOORTHY, B. Optimal homologous cycles, total unimodularity, and linear programming. In STOC '10: Proceedings of the 42nd ACM Symposiumon Theory of Computing (New York, NY, USA, June 6-8 2010), ACM, pp. 221-230. Also available as preprint arXiv:1001.0338v1 [math.AT] on http://arxiv.org/abs/1001.0338. URL http://doi.acm.org/10.1145/1806689. 1806721,arXiv:1001.0338, doi:10.1145/1806689.1806721.
-
STOC '10: Proceedings of the 42nd ACM Symposiumon Theory of Computing
, pp. 221-230
-
-
Dey, T.K.1
Hirani, A.N.2
Krishnamoorthy, B.3
-
8
-
-
0001380055
-
Exact solution of linear equations using p-adic expansions
-
doi:10.1007/BF01459082
-
DIXON, J. D. Exact solution of linear equations using p-adic expansions. Numer.Math. 40, 1 (1982), 137-141. URL http://dx.doi.org/10.1007/BF01459082, doi:10.1007/BF01459082.
-
(1982)
Numer.Math
, vol.40
, Issue.1
, pp. 137-141
-
-
Dixon, J.D.1
-
9
-
-
0041151682
-
A method of numerical solution of the problem of Plateau
-
1-4, doi:10.2307/1967991
-
DOUGLAS, J. A method of numerical solution of the problem of Plateau. Ann. ofMath. (2) 29, 1-4 (1927/28), 180-188. URL http://dx.doi.org/10.2307/ 1967991, doi:10.2307/1967991.
-
(1927)
Ann. of Math
, vol.29
, Issue.2
, pp. 180-188
-
-
Douglas, J.1
-
11
-
-
0003603813
-
-
W. H. Freeman and Co., San Francisco, Calif
-
GAREY, M. R., AND JOHNSON, D. S. Computers and Intractability: A guide to the theory of NP-completeness. W. H. Freeman and Co., San Francisco, Calif., 1979.
-
(1979)
Computers and Intractability: A Guide to the Theory of NP-completeness
-
-
Garey, M.R.1
Johnson, D.S.2
-
12
-
-
73849094741
-
Minimal surfaces extend shortest path segmentationmethods to 3D
-
February, doi:10.1109/TPAMI.2008.289
-
GRADY, L. Minimal surfaces extend shortest path segmentationmethods to 3D. IEEE Transactions on Pattern Analysis andMachine Intelligence 32, 2 (February 2010), 321-334. doi:10.1109/TPAMI.2008.289.
-
(2010)
IEEE Transactions on Pattern Analysis AndMachine Intelligence
, vol.32
, Issue.2
, pp. 321-334
-
-
Grady, L.1
-
13
-
-
84974001411
-
Intersections of least area surfaces
-
HASS, J. Intersections of least area surfaces. Pacific J.Math. 152, 1 (1992), 119-123.
-
(1992)
Pacific J. Math
, vol.152
, Issue.1
, pp. 119-123
-
-
Hass, J.1
-
14
-
-
0038310144
-
The size of spanning disks for polygonal curves
-
DOI 10.1007/s00454-002-2707-6
-
HASS, J., SNOEYINK, J., AND THURSTON, W. P. The size of spanning disks for polygonal curves. Discrete and Computational Geometry 29, 1 (March 2003), 1-17. URL http://dx.doi.org/10.1007/s00454-002-2707-6, doi:10.1007/s00454-002- 2707-6. (Pubitemid 36820367)
-
(2003)
Discrete and Computational Geometry
, vol.29
, Issue.1
, pp. 1-17
-
-
Hass, J.1
Snoeyink, J.2
Thurston, W.P.3
-
15
-
-
34247517282
-
On the convergence ofmetric and geometric properties of polyhedral surfaces
-
December
-
HILDEBRANDT, K., POLTHIER, K., AND WARDETZKY, M. On the convergence ofmetric and geometric properties of polyhedral surfaces. Geometriae Dedicata 123, 1 (December 2006), 89-112.
-
(2006)
Geometriae Dedicata
, vol.123
, Issue.1
, pp. 89-112
-
-
Hildebrandt, K.1
Polthier, K.2
Wardetzky, M.3
-
16
-
-
33745811987
-
-
Tech. Rep. TR-14-04, Harvard University, Department of Computer Science
-
KIRASANOV, D., AND GORTLER, S. J. A discrete global minimization algorithm for continuous variational problems. Tech. Rep. TR-14-04, Harvard University, Department of Computer Science, 2004.
-
(2004)
A Discrete Global Minimization Algorithm for Continuous Variational Problems
-
-
Kirasanov, D.1
Gortler, S.J.2
-
17
-
-
0345292312
-
Incompressible surfaces in knot spaces
-
LYON, H. C. Incompressible surfaces in knot spaces. Trans. Amer.Math. Soc. 157 (1971), 53-62. URL.
-
(1971)
Trans. Amer.Math. Soc.
, vol.157
, pp. 53-62
-
-
Lyon, H.C.1
-
18
-
-
7544227287
-
Algorithmic topology and classification of 3-manifolds
-
second ed, Springer, Berlin
-
MATVEEV, S. Algorithmic topology and classification of 3-manifolds, second ed., vol. 9 of Algorithms and Computation inMathematics. Springer, Berlin, 2007.
-
(2007)
Algorithms and Computation in Mathematics
, vol.9
-
-
Matveev, S.1
-
19
-
-
0003418230
-
-
fourth ed, Elsevier/Academic Press, Amsterdam,. A beginner's guide
-
MORGAN, F. Geometric measure theory, fourth ed. Elsevier/Academic Press, Amsterdam, 2009. A beginner's guide.
-
(2009)
Geometric Measure Theory
-
-
Morgan, F.1
-
21
-
-
0040557532
-
Explicit determination of area minimizinghypersurfaces, II
-
PARKS, H. R. Explicit determination of area minimizinghypersurfaces, II. Mem. Amer.Math. Soc. 60, 342 (1986),iv+90.
-
(1986)
Mem. Amer.Math. Soc.
, vol.60
, Issue.342
-
-
Parks, H.R.1
-
22
-
-
0005394726
-
Numerical approximation of parametric oriented area-minimizing hypersurfaces
-
doi:10.1137/0913027
-
PARKS, H. R. Numerical approximation of parametric oriented area-minimizing hypersurfaces. SIAM J. Sci Statist. Comput. 13, 2 (1992), 499-511. doi:10.1137/0913027.
-
(1992)
SIAM J. Sci Statist. Comput.
, vol.13
, Issue.2
, pp. 499-511
-
-
Parks, H.R.1
-
23
-
-
0031129189
-
Computing least area hypersurfaces spanning arbitrary boundaries
-
PII S1064827594278903
-
PARKS, H. R., AND PITTS, J. T. Computing least area hypersurfaces spanning arbitrary boundaries. SIAM J. Sci. Comput. 18, 3 (1997), 886-917. doi:10.1137/S1064827594278903. (Pubitemid 127640888)
-
(1997)
SIAM Journal of Scientific Computing
, vol.18
, Issue.3
, pp. 886-917
-
-
Parks, H.R.1
Pitts, J.T.2
-
24
-
-
84950826016
-
Computing discrete minimal surfaces and their conjugates
-
PINKALL, U., AND POLTHIER, K. Computing discrete minimal surfaces and their conjugates. Experiment.Math. 2, 1 (1993), 15-36. URL http://projecteuclid. org/getRecord?id=euclid.em/1062620735.
-
(1993)
Experiment. Math
, vol.2
, Issue.1
, pp. 15-36
-
-
Pinkall, U.1
Polthier, K.2
-
25
-
-
70349660725
-
Computational aspects of discrete minimal surfaces
-
Global theory of minimal surfaces. Amer.Math. Soc., Providence, RI
-
POLTHIER, K. Computational aspects of discrete minimal surfaces. In Global theory of minimal surfaces, vol. 2 of Clay Math. Proc. Amer.Math. Soc., Providence, RI, 2005, pp. 65-111..
-
(2005)
Clay Math. Proc.
, vol.2
, pp. 65-111
-
-
Polthier, K.1
-
26
-
-
0018053728
-
The complexity of satisfiability problems
-
ACM, New York
-
SCHAEFER, T. J. The complexity of satisfiability problems. In Conference Record of the Tenth Annual ACM Symposium on Theory of Computing (San Diego, Calif., 1978). ACM, New York, 1978, pp. 216-226.
-
(1978)
Conference Record of the Tenth Annual ACM Symposium on Theory of Computing (San Diego, Calif 1978)
, pp. 216-226
-
-
Schaefer, T.J.1
-
28
-
-
0040774367
-
Integral extreme points
-
VEINOTT, ARTHUR F., J., AND DANTZIG, G. B. Integral extreme points. SIAM Review 10, 3 (1968), 371-372. URL http://www.jstor.org/stable/2027662.
-
(1968)
SIAM Review
, vol.10
, Issue.3
, pp. 371-372
-
-
Veinott Arthur, F.J.1
Dantzig, G.B.2
|