-
1
-
-
0039227987
-
On sparse spanners of weighted graphs
-
I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted graphs. Discrete Comput. Geom., 9(1):81-100, 1993.
-
(1993)
Discrete Comput. Geom.
, vol.9
, Issue.1
, pp. 81-100
-
-
Althöfer, I.1
Das, G.2
Dobkin, D.3
Joseph, D.4
Soares, J.5
-
2
-
-
0030413554
-
Polynomial time approximation schemes f or euclidean tsp and other geometric problems
-
S. Arora. Polynomial time approximation schemes f or euclidean tsp and other geometric problems. In FOCS, pages 2-11, 1996.
-
(1996)
FOCS
, pp. 2-11
-
-
Arora, S.1
-
3
-
-
0032156828
-
Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and Other Geometric Problems
-
S. Arora. Polynomial time approximation schemes for euclidean traveling salesman and other geometric problems. J. ACM, 45(5):753-782, 1998. (Pubitemid 128497506)
-
(1998)
Journal of the ACM
, vol.45
, Issue.5
, pp. 753-782
-
-
Arora, S.1
-
6
-
-
0003425504
-
-
PhD thesis, Operation Research Center, MIT, Cambridge, MASS
-
D. Bertsimas. Probabilistic Combinatorial Optimization Problems. PhD thesis, Operation Research Center, MIT, Cambridge, MASS, 1988.
-
(1988)
Probabilistic Combinatorial Optimization Problems
-
-
Bertsimas, D.1
-
7
-
-
47149102713
-
Well-separated pair decomposition in linear time?
-
T. M. Chan. Well-separated pair decomposition in linear time? Inf. Process. Lett., 107(5):138-141, 2008.
-
(2008)
Inf. Process. Lett.
, vol.107
, Issue.5
, pp. 138-141
-
-
Chan, T.M.1
-
9
-
-
24944529059
-
On two-stage stochastic minimum spanning trees
-
Integer Programming and Combinatorial Optimization: 11th International IPCO Conference. Proceedings
-
K. Dhamdhere, R. Ravi, and M. Singh. On two-stage stochastic minimum spanning trees. In IPCO, volume 3509, pages 321-334, 2005. (Pubitemid 41322308)
-
(2005)
Lecture Notes in Computer Science
, vol.3509
, pp. 321-334
-
-
Dhamdhere, K.1
Ravi, R.2
Singh, M.3
-
11
-
-
4544311041
-
Boosted sampling: Approximation algorithms for stochastic optimization
-
P. Gupta, A. Martin, R. Ravi, and A. Sinha. Boosted sampling: Approximation algorithms for stochastic optimization. In Proc. 36th Annual ACM Symposium on Theory of Computing, pages 417-426, 2003.
-
(2003)
Proc. 36th Annual ACM Symposium on Theory of Computing
, pp. 417-426
-
-
Gupta, P.1
Martin, A.2
Ravi, R.3
Sinha, A.4
-
12
-
-
33244455928
-
Improved lower and upper bounds for universal TSP in planar metrics
-
DOI 10.1145/1109557.1109628, Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms
-
M. T. Hajiaghayi, R. Kleinberg, and T. Leighton. Improved lower and upper bounds for universal tsp in planar metrics. In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, SODA '06, pages 649-658. ACM, 2006. (Pubitemid 43275286)
-
(2006)
Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
, pp. 649-658
-
-
Hajiaghayi, M.T.1
Kleinberg, R.2
Leighton, T.3
-
14
-
-
1842539379
-
On the costs and benefits of procrastination: Approximation algorithms for stochastic combinatorial optimization problems
-
N. Immorlica, M. Karger, D.and Minkoff, and V. S. Mirrokni. On the costs and benefits of procrastination: approximation algorithms for stochastic combinatorial optimization problems. In SODA '04: Proc. 15th Annual ACM-SIAM symposium on Discrete algorithms, pages 691-700, 2004.
-
(2004)
SODA '04: Proc. 15th Annual ACM-SIAM Symposium on Discrete Algorithms
, pp. 691-700
-
-
Immorlica, N.1
Karger, M.2
Minkoff, D.3
Mirrokni, V.S.4
-
15
-
-
0024107816
-
A priori solution of a traveling salesman problem in which a random subset of the customers are visited
-
P. Jaillet. A priori solution of a traveling salesman problem in which a random subset of the customers are visited. Math. Oper. Res., 6(6), 1988.
-
(1988)
Math. Oper. Res
, vol.6
, pp. 6
-
-
Jaillet, P.1
-
17
-
-
3943048851
-
How long can a euclidean traveling salesman tour be?
-
H. J. Karloff. How long can a euclidean traveling salesman tour be? SIAM J. Discrete Math., 2(1), 1989.
-
(1989)
SIAM J. Discrete Math
, vol.2
, Issue.1
-
-
Karloff, H.J.1
-
18
-
-
55049136138
-
Commitment under uncertainty: Two-stage stochastic matching problems
-
I. Katriel, C. Kenyon-Mathieu, and E. Upfal. Commitment under uncertainty: Two-stage stochastic matching problems. Theoretical Computer Science, 408(2-3):213-223, 2008.
-
(2008)
Theoretical Computer Science
, vol.408
, Issue.2-3
, pp. 213-223
-
-
Katriel, I.1
Kenyon-Mathieu, C.2
Upfal, E.3
-
19
-
-
79960201641
-
Shape fitting on point sets with probability distributions
-
abs/0812.2967
-
M. Löffler and J. M. Phillips. Shape fitting on point sets with probability distributions. CoRR, abs/0812.2967, 2008.
-
(2008)
CoRR
-
-
Löffler, M.1
Phillips, J.M.2
-
20
-
-
74849124973
-
Largest and smallest convex hulls for imprecise points
-
M. Löffler and M. van Kreveld. Largest and smallest convex hulls for imprecise points. Algorithmica, 56:235-269, 2010.
-
(2010)
Algorithmica
, vol.56
, pp. 235-269
-
-
Löffler, M.1
Van Kreveld, M.2
-
21
-
-
73549120398
-
Largest bounding box, smallest diameter, and related problems on imprecise points
-
M. Löffler and M. van Kreveld. Largest bounding box, smallest diameter, and related problems on imprecise points. Comput. Geom. Theory Appl., 43(4):419-433, 2010.
-
(2010)
Comput. Geom. Theory Appl.
, vol.43
, Issue.4
, pp. 419-433
-
-
Löffler, M.1
Van Kreveld, M.2
-
22
-
-
73549120398
-
Largest bounding box, smallest diameter, and related problems on imprecise points
-
M. Löffler and M. van Kreveld. Largest bounding box, smallest diameter, and related problems on imprecise points. Comput. Geom., 43(4):419-433, 2010.
-
(2010)
Comput. Geom.
, vol.43
, Issue.4
, pp. 419-433
-
-
Löffler, M.1
Van Kreveld, M.2
-
25
-
-
0024750851
-
Spacefilling curves and the planar travelling salesman problem
-
L. K. Platzman and J. B. III. Spacefilling curves and the planar travelling salesman problem. J. ACM, 36(4):719-737, 1989.
-
(1989)
J. ACM
, vol.36
, Issue.4
, pp. 719-737
-
-
Platzman, L.K.1
B III, J.2
-
26
-
-
0000166629
-
The complexity of counting cuts and of computing the probability that a graph is connected
-
J. S. Provan and M. O. Ball. The complexity of counting cuts and of computing the probability that a graph is connected. SIAM J. Comput., 12(4):777-788, 1983.
-
(1983)
SIAM J. Comput.
, vol.12
, Issue.4
, pp. 777-788
-
-
Provan, J.S.1
Ball, M.O.2
-
27
-
-
0022769608
-
Complexity of reliability computations in planar and acrylic graphs
-
J. S. Provan. The complexity of reliability computations in planar and acyclic graphs. SIAM J. Comput., 15(3):694-702, 1986. (Pubitemid 16634091)
-
(1986)
SIAM Journal on Computing
, vol.15
, Issue.3
, pp. 694-702
-
-
Provan, J.S.1
-
28
-
-
45749148258
-
A constant approximation algorithm for the a priori traveling salesman problem
-
D. B. Shmoys and K. Talwar. A constant approximation algorithm for the a priori traveling salesman problem. In IPCO, pages 331-343, 2008.
-
(2008)
IPCO
, pp. 331-343
-
-
Shmoys, D.B.1
Talwar, K.2
-
29
-
-
0029324861
-
A priori bounds on the euclidean traveling salesman
-
T. L. Snyder and J. M. Steele. A priori bounds on the euclidean traveling salesman. SIAM J. Comput., 24(3), 1995.
-
(1995)
SIAM J. Comput.
, vol.24
, pp. 3
-
-
Snyder, T.L.1
Steele, J.M.2
-
30
-
-
0001838523
-
On frieze's ζ(3) limit for lengths of minimal spanning trees
-
J. Steele. On frieze's ζ (3) limit for lengths of minimal spanning trees. Ann. Prob., 9:365-376, 1987.
-
(1987)
Ann. Prob
, vol.9
, pp. 365-376
-
-
Steele, J.1
-
31
-
-
38149072053
-
Approximation algorithms for 2-stage stochastic optimization problems
-
C. Swamy and D. B. Shmoys. Approximation algorithms for 2-stage stochastic optimization problems. SIGACT News, 37(1):33-46, 2006.
-
(2006)
SIGACT News
, vol.37
, Issue.1
, pp. 33-46
-
-
Swamy, C.1
Shmoys, D.B.2
-
32
-
-
0023366861
-
On embedding a graph in the grid with the minimum number of bends
-
R. Tamassia. On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput., 16(3):421-444, 1987. (Pubitemid 17583644)
-
(1987)
SIAM Journal on Computing
, vol.16
, Issue.3
, pp. 421-444
-
-
Tamassia, R.1
-
33
-
-
0019213414
-
The relative neighbourhood graph of a finite planar set
-
G. T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern Recognition, 12:261-268, 1980.
-
(1980)
Pattern Recognition
, vol.12
, pp. 261-268
-
-
Toussaint, G.T.1
|