메뉴 건너뛰기




Volumn 109, Issue 12, 2011, Pages

Electromagnetic absorption mechanisms in metal nanospheres: Bulk and surface effects in radiofrequency-terahertz heating of nanoparticles

Author keywords

[No Author keywords available]

Indexed keywords

ABSORPTION MECHANISMS; FAR-INFRARED FREQUENCIES; GOLD NANOPARTICLES; LOW FREQUENCY RADIATION; METAL NANOSPHERES; METALLIC NANOPARTICLES; NANOPARTICLE SOLUTIONS; NONMAGNETICS; QUANTUM EFFECTS; RADIO FREQUENCY HEATING; RF HEATING; SURFACE EFFECT;

EID: 79960153309     PISSN: 00218979     EISSN: None     Source Type: Journal    
DOI: 10.1063/1.3600222     Document Type: Article
Times cited : (60)

References (37)
  • 16
    • 0000392759 scopus 로고
    • 10.1103/PhysRevB.26.3582
    • P. N. Sen and D. B. Tanner, Phys. Rev. B 26, 3582 (1982). 10.1103/PhysRevB.26.3582
    • (1982) Phys. Rev. B , vol.26 , pp. 3582
    • Sen, P.N.1    Tanner, D.B.2
  • 17
  • 19
    • 79960164742 scopus 로고    scopus 로고
    • Sigma-Aldrich Corporation, see
    • Sigma-Aldrich Corporation, see http://www.sigmaaldrich.com.
  • 21
    • 0000148980 scopus 로고
    • 10.1103/PhysRevLett.50.1316
    • P. Apell and D. R. Penn, Phys. Rev. Lett. 50, 1316 (1983). 10.1103/PhysRevLett.50.1316
    • (1983) Phys. Rev. Lett. , vol.50 , pp. 1316
    • Apell, P.1    Penn, D.R.2
  • 22
    • 84927892441 scopus 로고
    • 10.1088/0031-8949/26/2/010
    • P. Apell and. Ljungbert, Physica Scr. 26, 113 (1982). 10.1088/0031-8949/26/2/010
    • (1982) Physica Scr. , vol.26 , pp. 113
    • Apell, P.1    Ljungbert2
  • 23
    • 0021605846 scopus 로고
    • Effective relaxation time in small spheres: Diffuse surface scattering
    • DOI 10.1016/0038-1098(84)90490-3
    • P. Apell, R. Monreal, and F. Flores, Solid State Commun. 52, 971 (1984). 10.1016/0038-1098(84)90490-3 (Pubitemid 15457455)
    • (1984) Solid State Communications , vol.52 , Issue.12 , pp. 971-973
    • Apell, P.1    Monreal, R.2    Flores, F.3
  • 24
    • 16444363231 scopus 로고
    • 10.1088/0031-8949/29/2/010
    • P. Apell, Physica Scr. 29, 146 (1984). 10.1088/0031-8949/29/2/010
    • (1984) Physica Scr. , vol.29 , pp. 146
    • Apell, P.1
  • 25
    • 0006796417 scopus 로고
    • 10.1103/PhysRevB.27.6058
    • B. N. J. Persson and P. Apell, Phys. Rev. B 27, 6058 (1983). 10.1103/PhysRevB.27.6058
    • (1983) Phys. Rev. B , vol.27 , pp. 6058
    • Persson, B.N.J.1    Apell, P.2
  • 26
    • 79960183731 scopus 로고    scopus 로고
    • Using 0, the electric dipole contribution is an order of magnitude smaller than the magnetic dipole term, but when using eff in the electric dipole term and 0 in the magnetic dipole term the roles are reversed and the electric dipole term becomes an order of magnitude larger than the magnetic contribution
    • Using 0, the electric dipole contribution is an order of magnitude smaller than the magnetic dipole term, but when using eff in the electric dipole term and 0 in the magnetic dipole term the roles are reversed and the electric dipole term becomes an order of magnitude larger than the magnetic contribution.
  • 27
    • 0022061067 scopus 로고
    • Far-infrared optical absorption due to surface phonon excitations in small metal particles
    • DOI 10.1016/0038-1098(85)90101-2
    • R. Monreal, J. Giraldo, F. Flores, and P. Apell, Solid State Commun. 54, 661 (1985). 10.1016/0038-1098(85)90101-2 (Pubitemid 15494928)
    • (1985) Solid State Communications , vol.54 , Issue.7 , pp. 661-663
    • Monreal, R.1    Giraldo, J.2    Flores, F.3    Apell, P.4
  • 32
    • 0037050031 scopus 로고    scopus 로고
    • Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna
    • DOI 10.1038/415152a
    • K. Hamad-Schifferil, J. J. Schwartz, A. T. Santos, S. Zhang, and J. M. Jacobson, Nature 415, 152 (2002). 10.1038/415152a (Pubitemid 34059512)
    • (2002) Nature , vol.415 , Issue.6868 , pp. 152-155
    • Hamad-Schifferli, K.1    Schwartz, J.J.2    Santos, A.T.3    Zhang, S.4    Jacobson, J.M.5
  • 34
    • 33847685255 scopus 로고    scopus 로고
    • Microwave-accelerated ultrafast nanoparticle aggregation assays using gold colloids
    • DOI 10.1021/ac0620967
    • K. Aslan and C. D. Geddes, Anal. Chem. 79, 2131 (2007). 10.1021/ac0620967 (Pubitemid 46355249)
    • (2007) Analytical Chemistry , vol.79 , Issue.5 , pp. 2131-2136
    • Aslan, K.1    Geddes, C.D.2
  • 35
    • 0024753040 scopus 로고
    • 10.1021/je00058a001
    • U. Kaatze, J. Chem. Eng. Data 34, 371 (1989). 10.1021/je00058a001
    • (1989) J. Chem. Eng. Data , vol.34 , pp. 371
    • Kaatze, U.1
  • 36
    • 79960166784 scopus 로고    scopus 로고
    • Here, we use the Maxwell-Garnett (MG) effective permittivity. In a nonabsorbing host medium for large particle conductivity, the magnetic dipole contribution can dominate absorption, which is not accounted for in the MG effective permittivity. Hence, one can question the applicability of this method for the = 10 7 S/m case in Fig.. However, it is easy to show using the polarizability of such a nanoparticle with a water or saline coating that the absorption in the coating renders the magnetic dipole contribution negligible, even for low frequencies where the water host is weakly-absorbing, and so the results in Fig. for the metal nanoparticle are valid
    • Here, we use the Maxwell-Garnett (MG) effective permittivity. In a nonabsorbing host medium for large particle conductivity, the magnetic dipole contribution can dominate absorption, which is not accounted for in the MG effective permittivity. Hence, one can question the applicability of this method for the = 10 7 S/m case in Fig.. However, it is easy to show using the polarizability of such a nanoparticle with a water or saline coating that the absorption in the coating renders the magnetic dipole contribution negligible, even for low frequencies where the water host is weakly-absorbing, and so the results in Fig. for the metal nanoparticle are valid.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.