-
1
-
-
78651344780
-
-
10.1002/smll.201000134
-
L. C. Kennedy, L. R. Bickford, N. A. Lewinski, A. J. Coughlin, Y. Hu, E. S. Day, J. L. West, and R. A. Drezek, Small 7, 169 (2011). 10.1002/smll. 201000134
-
(2011)
Small
, vol.7
, pp. 169
-
-
Kennedy, L.C.1
Bickford, L.R.2
Lewinski, N.A.3
Coughlin, A.J.4
Hu, Y.5
Day, E.S.6
West, J.L.7
Drezek, R.A.8
-
3
-
-
33748852382
-
Limits of localized heating by electromagnetically excited nanoparticles
-
DOI 10.1063/1.2335783
-
P. Keblinski, D. G. Cahill, A. Bodapati, C. R. Sullivan and T. A. Taton, J. Appl. Phys. 100, 054305 (2006). 10.1063/1.2335783 (Pubitemid 44422083)
-
(2006)
Journal of Applied Physics
, vol.100
, Issue.5
, pp. 054305
-
-
Keblinski, P.1
Cahill, D.G.2
Bodapati, A.3
Sullivan, C.R.4
Taton, T.A.5
-
4
-
-
58649104170
-
-
S. A. Curley, P. Cherukuri, K. Briggs, C. R. Patra, M. Upton, E. Dolson, and P. Mukherjee, J. Exp. Ther. Oncol. 7, 313 (2008).
-
(2008)
J. Exp. Ther. Oncol.
, vol.7
, pp. 313
-
-
Curley, S.A.1
Cherukuri, P.2
Briggs, K.3
Patra, C.R.4
Upton, M.5
Dolson, E.6
Mukherjee, P.7
-
5
-
-
41549083324
-
Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells
-
DOI 10.1186/1477-3155-6-2
-
C. J. Gannon, C. R. Patra, R. Bhattacharya, P. Mukherjee, and S. A Curley, Nanobiotechnology 6, 2 (2008). 10.1186/1477-3155-6-2 (Pubitemid 351472331)
-
(2008)
Journal of Nanobiotechnology
, vol.6
, pp. 2
-
-
Gannon, C.J.1
Patra, C.R.2
Bhattacharya, R.3
Mukherjee, P.4
Curley, S.A.5
-
6
-
-
47549117709
-
Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles
-
DOI 10.1016/j.surg.2008.03.036, PII S0039606008002523
-
J. Cardinal, J. Klune, E. Chory, G. Jeyabalan, J. Kanzius, M. Nalesnik, and D. Geller, Surgery 144, 125 (2008). 10.1016/j.surg.2008.03.036 (Pubitemid 352010312)
-
(2008)
Surgery
, vol.144
, Issue.2
, pp. 125-132
-
-
Cardinal, J.1
Klune, J.R.2
Chory, E.3
Jeyabalan, G.4
Kanzius, J.S.5
Nalesnik, M.6
Geller, D.A.7
-
7
-
-
65549110797
-
-
10.1007/s12274-009-9048-1
-
C. H. Moran, S. M. Weinerdi, T. K. Cherukuri, C. Kittrell, B. J. Wiley, N. W. Nicholas, S. A. Curley, J. S. Kanzius, and P. Cherukuri, Nano Res. 2, 400 (2009). 10.1007/s12274-009-9048-1
-
(2009)
Nano Res.
, vol.2
, pp. 400
-
-
Moran, C.H.1
Weinerdi, S.M.2
Cherukuri, T.K.3
Kittrell, C.4
Wiley, B.J.5
Nicholas, N.W.6
Curley, S.A.7
Kanzius, J.S.8
Cherukuri, P.9
-
10
-
-
78650322382
-
-
10.1158/1078-0432.CCR-10-2055
-
E. S. Glazer, C. Zhu, K. L. Massey, C. S. Thompson, W. D. Kaluarachchi, A. N. Hamir, and S. A. Curley, Clin. Cancer Res. 16, 5712 (2010). 10.1158/1078-0432.CCR-10-2055
-
(2010)
Clin. Cancer Res.
, vol.16
, pp. 5712
-
-
Glazer, E.S.1
Zhu, C.2
Massey, K.L.3
Thompson, C.S.4
Kaluarachchi, W.D.5
Hamir, A.N.6
Curley, S.A.7
-
11
-
-
77955297544
-
-
10.1016/j.surg.2010.04.025
-
E. S. Glazer, K. L. Massey, C. Zhu, and S. A. Curley, Surgery 148, 319 (2010). 10.1016/j.surg.2010.04.025
-
(2010)
Surgery
, vol.148
, pp. 319
-
-
Glazer, E.S.1
Massey, K.L.2
Zhu, C.3
Curley, S.A.4
-
12
-
-
78650322382
-
-
10.1158/1078-0432.CCR-10-2055
-
E. S. Glazer, C. Zhu, K. L. Massey, C. S. Thompson, W. D. Kaluarachchi, A. N. Hamir, and S. A. Curley, Clin. Cancer Res. 16, 5712 (2010). 10.1158/1078-0432.CCR-10-2055
-
(2010)
Clin. Cancer Res.
, vol.16
, pp. 5712
-
-
Glazer, E.S.1
Zhu, C.2
Massey, K.L.3
Thompson, C.S.4
Kaluarachchi, W.D.5
Hamir, A.N.6
Curley, S.A.7
-
13
-
-
79953325886
-
-
10.1016/j.jcis.2011.01.059
-
D. Li, Y. S. Jung, S. Tan, H. K. Kim, E. Chory, and D. A. Geller, J. Colloid Interface Sci. 358, 47 (2011). 10.1016/j.jcis.2011.01.059
-
(2011)
J. Colloid Interface Sci.
, vol.358
, pp. 47
-
-
Li, D.1
Jung, Y.S.2
Tan, S.3
Kim, H.K.4
Chory, E.5
Geller, D.A.6
-
16
-
-
0000392759
-
-
10.1103/PhysRevB.26.3582
-
P. N. Sen and D. B. Tanner, Phys. Rev. B 26, 3582 (1982). 10.1103/PhysRevB.26.3582
-
(1982)
Phys. Rev. B
, vol.26
, pp. 3582
-
-
Sen, P.N.1
Tanner, D.B.2
-
19
-
-
79960164742
-
-
Sigma-Aldrich Corporation, see
-
Sigma-Aldrich Corporation, see http://www.sigmaaldrich.com.
-
-
-
-
21
-
-
0000148980
-
-
10.1103/PhysRevLett.50.1316
-
P. Apell and D. R. Penn, Phys. Rev. Lett. 50, 1316 (1983). 10.1103/PhysRevLett.50.1316
-
(1983)
Phys. Rev. Lett.
, vol.50
, pp. 1316
-
-
Apell, P.1
Penn, D.R.2
-
22
-
-
84927892441
-
-
10.1088/0031-8949/26/2/010
-
P. Apell and. Ljungbert, Physica Scr. 26, 113 (1982). 10.1088/0031-8949/26/2/010
-
(1982)
Physica Scr.
, vol.26
, pp. 113
-
-
Apell, P.1
Ljungbert2
-
23
-
-
0021605846
-
Effective relaxation time in small spheres: Diffuse surface scattering
-
DOI 10.1016/0038-1098(84)90490-3
-
P. Apell, R. Monreal, and F. Flores, Solid State Commun. 52, 971 (1984). 10.1016/0038-1098(84)90490-3 (Pubitemid 15457455)
-
(1984)
Solid State Communications
, vol.52
, Issue.12
, pp. 971-973
-
-
Apell, P.1
Monreal, R.2
Flores, F.3
-
24
-
-
16444363231
-
-
10.1088/0031-8949/29/2/010
-
P. Apell, Physica Scr. 29, 146 (1984). 10.1088/0031-8949/29/2/010
-
(1984)
Physica Scr.
, vol.29
, pp. 146
-
-
Apell, P.1
-
26
-
-
79960183731
-
-
Using 0, the electric dipole contribution is an order of magnitude smaller than the magnetic dipole term, but when using eff in the electric dipole term and 0 in the magnetic dipole term the roles are reversed and the electric dipole term becomes an order of magnitude larger than the magnetic contribution
-
Using 0, the electric dipole contribution is an order of magnitude smaller than the magnetic dipole term, but when using eff in the electric dipole term and 0 in the magnetic dipole term the roles are reversed and the electric dipole term becomes an order of magnitude larger than the magnetic contribution.
-
-
-
-
27
-
-
0022061067
-
Far-infrared optical absorption due to surface phonon excitations in small metal particles
-
DOI 10.1016/0038-1098(85)90101-2
-
R. Monreal, J. Giraldo, F. Flores, and P. Apell, Solid State Commun. 54, 661 (1985). 10.1016/0038-1098(85)90101-2 (Pubitemid 15494928)
-
(1985)
Solid State Communications
, vol.54
, Issue.7
, pp. 661-663
-
-
Monreal, R.1
Giraldo, J.2
Flores, F.3
Apell, P.4
-
30
-
-
65249154432
-
-
10.1021/nl8036905
-
H. H. Richardson, M. T. Carlson, P. J. Tandler, P. H., and A. O. Govorov, Nano Lett. 9, 1139 (2009). 10.1021/nl8036905
-
(2009)
Nano Lett.
, vol.9
, pp. 1139
-
-
Richardson, H.H.1
Carlson, M.T.2
Tandler, P.J.3
Govorov, A.O.4
-
32
-
-
0037050031
-
Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna
-
DOI 10.1038/415152a
-
K. Hamad-Schifferil, J. J. Schwartz, A. T. Santos, S. Zhang, and J. M. Jacobson, Nature 415, 152 (2002). 10.1038/415152a (Pubitemid 34059512)
-
(2002)
Nature
, vol.415
, Issue.6868
, pp. 152-155
-
-
Hamad-Schifferli, K.1
Schwartz, J.J.2
Santos, A.T.3
Zhang, S.4
Jacobson, J.M.5
-
33
-
-
31544459915
-
Nanoparticle-mediated local and remote manipulation of protein aggregation
-
DOI 10.1021/nl0516862
-
M. J. Kogan, N. G. Bastus, R. Amigo, D. Grillo-Bosch, E. Araya, A. Turiel, A. Labarta, E. Giralt, and V. F. Puntes, Nano Lett. 6, 110 (2006). 10.1021/nl0516862 (Pubitemid 43166111)
-
(2006)
Nano Letters
, vol.6
, Issue.1
, pp. 110-115
-
-
Kogan, M.J.1
Bastus, N.G.2
Amigo, R.3
Grillo-Bosch, D.4
Araya, E.5
Turiel, A.6
Labarta, A.7
Giralt, E.8
Puntes, V.F.9
-
34
-
-
33847685255
-
Microwave-accelerated ultrafast nanoparticle aggregation assays using gold colloids
-
DOI 10.1021/ac0620967
-
K. Aslan and C. D. Geddes, Anal. Chem. 79, 2131 (2007). 10.1021/ac0620967 (Pubitemid 46355249)
-
(2007)
Analytical Chemistry
, vol.79
, Issue.5
, pp. 2131-2136
-
-
Aslan, K.1
Geddes, C.D.2
-
35
-
-
0024753040
-
-
10.1021/je00058a001
-
U. Kaatze, J. Chem. Eng. Data 34, 371 (1989). 10.1021/je00058a001
-
(1989)
J. Chem. Eng. Data
, vol.34
, pp. 371
-
-
Kaatze, U.1
-
36
-
-
79960166784
-
-
Here, we use the Maxwell-Garnett (MG) effective permittivity. In a nonabsorbing host medium for large particle conductivity, the magnetic dipole contribution can dominate absorption, which is not accounted for in the MG effective permittivity. Hence, one can question the applicability of this method for the = 10 7 S/m case in Fig.. However, it is easy to show using the polarizability of such a nanoparticle with a water or saline coating that the absorption in the coating renders the magnetic dipole contribution negligible, even for low frequencies where the water host is weakly-absorbing, and so the results in Fig. for the metal nanoparticle are valid
-
Here, we use the Maxwell-Garnett (MG) effective permittivity. In a nonabsorbing host medium for large particle conductivity, the magnetic dipole contribution can dominate absorption, which is not accounted for in the MG effective permittivity. Hence, one can question the applicability of this method for the = 10 7 S/m case in Fig.. However, it is easy to show using the polarizability of such a nanoparticle with a water or saline coating that the absorption in the coating renders the magnetic dipole contribution negligible, even for low frequencies where the water host is weakly-absorbing, and so the results in Fig. for the metal nanoparticle are valid.
-
-
-
-
37
-
-
78751521644
-
-
10.1063/1.3516480
-
M. V. Shuba, G. Ya. Slepyan, S. A. Maksimenko, and G. W. Hanson, J. Appl. Phys. 108, 114302 (2010). 10.1063/1.3516480
-
(2010)
J. Appl. Phys.
, vol.108
, pp. 114302
-
-
Shuba, M.V.1
Ya. Slepyan, G.2
Maksimenko, S.A.3
Hanson, G.W.4
|