메뉴 건너뛰기




Volumn 30, Issue 3, 2011, Pages 27-33

Probabilistic flood forecasting by a sampling-based Bayesian model

Author keywords

Bayesian method; Flood control engineering; Input uncertainty; Markov chain Monte Carlo; Parameter uncertainty; Probabilistic forecasting; Xin'anjiang model

Indexed keywords

BAYESIAN METHODS; FLOOD CONTROL ENGINEERING; INPUT UNCERTAINTY; MARKOV CHAIN MONTE CARLO; PARAMETER UNCERTAINTY; PROBABILISTIC FORECASTING; XIN'ANJIANG MODELS;

EID: 79960070000     PISSN: 10031243     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (7)

References (9)
  • 1
    • 77950177246 scopus 로고    scopus 로고
    • Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors
    • Renard B, Kavetski D, Kuczera G, et al. Understanding predictive uncertainty in hydrologic modeling: The challenge of identifying input and structural errors[J]. Water Resources Research, 2010.
    • (2010) Water Resources Research
    • Renard, B.1    Kavetski, D.2    Kuczera, G.3
  • 2
    • 39149086002 scopus 로고    scopus 로고
    • Bayesian probabilistic flood forecasting model based on adaptive Metropolis-MCMC algorithm
    • Chinese source
    • XING Zhengxiang, RUI Xiaofang, CUI Haiyan, et al. Bayesian probabilistic flood forecasting model based on adaptive Metropolis-MCMC algorithm[J]. Journal of Hydraulic Engineering, 2007(12): 94-100. (in Chinese)
    • (2007) Journal of Hydraulic Engineering , Issue.12 , pp. 94-100
    • Xing, Z.1    Rui, X.2    Cui, H.3
  • 3
    • 14944365603 scopus 로고    scopus 로고
    • Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation
    • Vrugt J A, Diks C G H, Gupta H V, et al. Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation[J]. Water Resources Research, 2005 (1).
    • (2005) Water Resources Research , Issue.1
    • Vrugt, J.A.1    Diks, C.G.H.2    Gupta, H.V.3
  • 4
    • 69849096009 scopus 로고    scopus 로고
    • Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis
    • Thyer M, Renard B, Kavetski D, et al. Critical evaluation of parameter consistency and predictive uncertainty in hydrological modeling: A case study using Bayesian total error analysis[J]. Water Resources Research, 2009.
    • (2009) Water Resources Research
    • Thyer, M.1    Renard, B.2    Kavetski, D.3
  • 7
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman A, Rubin D. Inference from iterative simulation using multiple sequences[J]. Statistical Science, 1992 (4): 457-472.
    • (1992) Statistical Science , Issue.4 , pp. 457-472
    • Gelman, A.1    Rubin, D.2
  • 9
    • 48649088700 scopus 로고    scopus 로고
    • Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation
    • Department of Statistics, University of Washington
    • Gneiting T, Westveld A, Raferty A, et al. Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation[R]. Department of Statistics, University of Washington, 2004.
    • (2004)
    • Gneiting, T.1    Westveld, A.2    Raferty, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.