메뉴 건너뛰기




Volumn 6669 LNCS, Issue , 2011, Pages 224-231

Feature selection in regression tasks using conditional mutual information

Author keywords

Conditional Density Estimation; Feature Selection; Information measures; Regression

Indexed keywords

AGGLOMERATIVE HIERARCHICAL CLUSTERING; CONDITIONAL DENSITY; CONDITIONAL MUTUAL INFORMATION; DATA SETS; DISSIMILARITY MATRIX; FEATURE SELECTION METHODS; INFORMATION MEASURES; REGRESSION; REGRESSION ESTIMATION; REGRESSION FUNCTION; REGRESSION PROBLEM; ROOT MEAN SQUARED ERRORS; SELECTION METHODS; SUPPORT VECTOR REGRESSIONS; SUPPORT VECTOR REGRESSION (SVR);

EID: 79959999906     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-21257-4_28     Document Type: Conference Paper
Times cited : (6)

References (21)
  • 3
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedmann,M.: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 32(200), 675-701 (1937)
    • (1937) J. Am. Stat. Assoc. , vol.32 , Issue.200 , pp. 675-701
    • Friedmann, M.1
  • 4
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • García, S., Fernández, A., Luengo, J., Herrera, F.: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power. Information Sciences 180, 2044-2064 (2010)
    • (2010) Information Sciences , vol.180 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 7
    • 77949570107 scopus 로고    scopus 로고
    • Fast kernel conditional density estimation: A dual-tree Monte Carlo approach
    • Holmes, M.P., Gray, A., Isbell, C.L.: Fast kernel conditional density estimation: A dual-tree Monte Carlo approach. Comput. Stat. Data Analysis 54(7), 1707-1718 (2010)
    • (2010) Comput. Stat. Data Analysis , vol.54 , Issue.7 , pp. 1707-1718
    • Holmes, M.P.1    Gray, A.2    Isbell, C.L.3
  • 9
    • 0033640646 scopus 로고    scopus 로고
    • Statistical pattern recognition: A review
    • Jain, A.K., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE Trans. PAMI 22(1), 4-37 (2000)
    • (2000) IEEE Trans. PAMI , vol.22 , Issue.1 , pp. 4-37
    • Jain, A.K.1    Duin, R.P.W.2    Mao, J.3
  • 10
    • 0029535737 scopus 로고
    • Particle Swarm Optimization
    • Kennedy, J., Eberhart, R.: Particle Swarm Optimization. In: IEEE ICNN, pp. 1942-1948 (1995)
    • (1995) IEEE ICNN , pp. 1942-1948
    • Kennedy, J.1    Eberhart, R.2
  • 11
    • 0036933407 scopus 로고    scopus 로고
    • Input feature selection by mutual information based on parzen window
    • Kwak, N., Choi, C.-H.: Input feature selection by mutual information based on parzen window. IEEE Trans. PAMI 24(12), 1667-1671 (2002)
    • (2002) IEEE Trans. PAMI , vol.24 , Issue.12 , pp. 1667-1671
    • Kwak, N.1    Choi, C.-H.2
  • 12
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash, M., Liu, H.: Feature selection for classification. Intelligent Data Analysis 1, 131-156 (1997)
    • (1997) Intelligent Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 13
    • 60449098766 scopus 로고    scopus 로고
    • Particle Swarms for Feature Extraction of Hyperspectral Data
    • Monteiro, S.T., Kosugi, Y.: Particle Swarms for Feature Extraction of Hyperspectral Data. IEICE Trans. Inf. and Syst. E90D(7), 1038-1046 (2007)
    • (2007) IEICE Trans. Inf. and Syst. E90D , vol.7 , pp. 1038-1046
    • Monteiro, S.T.1    Kosugi, Y.2
  • 15
    • 35248845658 scopus 로고    scopus 로고
    • On the relationship between classification error bounds and training criteria in statistical pattern recognition
    • Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. Springer, Heidelberg
    • Ney, H.: On the relationship between classification error bounds and training criteria in statistical pattern recognition. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652, pp. 636-645. Springer, Heidelberg (2003)
    • (2003) LNCS , vol.2652 , pp. 636-645
    • Ney, H.1
  • 16
    • 85115260483 scopus 로고
    • Floating search methods for feature selection with nonmonotonic criterion functions
    • Pudil, P., Ferri, F.J., Novovicova, J., Kittler, J.: Floating search methods for feature selection with nonmonotonic criterion functions. Pattern Recognition 2, 279-283 (1994)
    • (1994) Pattern Recognition , vol.2 , pp. 279-283
    • Pudil, P.1    Ferri, F.J.2    Novovicova, J.3    Kittler, J.4
  • 17
    • 0001529784 scopus 로고
    • Remarks on some nonparametric estimates of a density function
    • Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 27, 832-837 (1956)
    • (1956) Ann. Math. Statist. , vol.27 , pp. 832-837
    • Rosenblatt, M.1
  • 18
    • 76749129275 scopus 로고    scopus 로고
    • Supervised feature selection by clustering using conditional mutual information-based distances
    • Sotoca, J.M., Pla, F.: Supervised feature selection by clustering using conditional mutual information-based distances. Pattern Recognition 43(6), 2068-2081 (2010)
    • (2010) Pattern Recognition , vol.43 , Issue.6 , pp. 2068-2081
    • Sotoca, J.M.1    Pla, F.2
  • 19
    • 67650254253 scopus 로고    scopus 로고
    • Advances in Feature Selection with Mutual Information
    • Biehl, M., Hammer, B., Verleysen, M., Villmann, T. (eds.) Similarity-Based Clustering. Springer, Heidelberg
    • Verleysen, M., Rossi, F., François, D.: Advances in Feature Selection with Mutual Information. In: Biehl, M., Hammer, B., Verleysen, M., Villmann, T. (eds.) Similarity-Based Clustering. LNCS, vol. 5400, pp. 52-69. Springer, Heidelberg (2009)
    • (2009) LNCS , vol.5400 , pp. 52-69
    • Verleysen, M.1    Rossi, F.2    François, D.3
  • 20
    • 84944178665 scopus 로고
    • Hierarchical grouping to optimize an objective function
    • Ward, J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236-244 (1963)
    • (1963) J. Am. Stat. Assoc. , vol.58 , Issue.301 , pp. 236-244
    • Ward, J.H.1
  • 21
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. J. R. Statist. Soc. B 67(part 2), 301-320 (2005)
    • (2005) J. R. Statist. Soc. B , vol.67 , Issue.PART 2 , pp. 301-320
    • Zou, H.1    Hastie, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.