메뉴 건너뛰기




Volumn , Issue , 2011, Pages 532-537

Signal decomposition by multi-scale PCA and its applications to long-term EEG signal classification

Author keywords

Biomedical Signal Classification; Multi scale Principal Component Analysis; Principal Component Analysis; Signal Decomposition

Indexed keywords

BIOMEDICAL IMAGES; BIOMEDICAL SIGNAL; CLASSIFICATION ACCURACY; CLASSIFICATION METHODS; DE-NOISING; EEG SIGNAL CLASSIFICATION; EEG SIGNALS; EPILEPTIC SEIZURE DETECTION; MULTI-SCALE PRINCIPAL COMPONENT ANALYSIS; MULTISCALES; ORIGINAL SIGNAL; PCA METHOD; PRINCIPAL COMPONENTS; SIGNAL CLASSIFICATION; SIGNAL DECOMPOSITION; TEMPORAL DOMAIN;

EID: 79959956378     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCME.2011.5876798     Document Type: Conference Paper
Times cited : (18)

References (13)
  • 1
    • 33751396389 scopus 로고    scopus 로고
    • EEG signal classification using wavelet feature extraction and a mixture of expert model
    • DOI 10.1016/j.eswa.2006.02.005, PII S0957417406000844
    • A. Subasi. EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Systems with Applications, 32(4):1084-1093,2007. (Pubitemid 44821797)
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1084-1093
    • Subasi, A.1
  • 2
    • 0000325341 scopus 로고
    • On lines and planes of closest fit to systems of points in space
    • K. Pearson, on lines and planes of closest fit to systems of points in space. Phil. Mag. (6), 2, 559-572, 1901.
    • (1901) Phil. Mag. , vol.2 , Issue.6 , pp. 559-572
    • Pearson, K.1
  • 4
    • 0024700097 scopus 로고
    • A theory for multiresolution signal decomposition: The wavelet representation
    • S. G. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Anal. Mach. Intell., 11,674-693, 1989.
    • (1989) IEEE Trans. Pattern Anal. Mach. Intell. , vol.11 , pp. 674-693
    • Mallat, S.G.1
  • 5
    • 0032118892 scopus 로고    scopus 로고
    • Multiscale PCA with application to MSPC monitoring
    • B. Bakshi. Multiscale PCA with application to MSPC monitoring,A IChE J., 44, pp. 1596-1610, 1998.
    • (1998) A IChE J. , vol.44 , pp. 1596-1610
    • Bakshi, B.1
  • 6
    • 0000307067 scopus 로고    scopus 로고
    • Multiscale analysis and modeling using wavelets
    • B. Bakshi. Multiscale analysis and modeling using wavelets. Journal of chemometrics, 13.3-4, 415-434, 1999.
    • (1999) Journal of Chemometrics , vol.13 , Issue.3-4 , pp. 415-434
    • Bakshi, B.1
  • 9
    • 56349106179 scopus 로고    scopus 로고
    • Crosscorrelation aided support vector machine classifier for classification of EEG signals
    • S. Chandaka, A. Chatterjee, and S. Munshi. Crosscorrelation aided support vector machine classifier for classification of EEG signals. Expen Systems With Applications, 36(2P1):1329-1336, 2009.
    • (2009) Expen Systems with Applications , vol.36 , Issue.2 P1 , pp. 1329-1336
    • Chandaka, S.1    Chatterjee, A.2    Munshi, S.3
  • 10
    • 77952708588 scopus 로고    scopus 로고
    • A Comparative Study of Noise Effect on Wavelet Based De-nosing Methods
    • S. Xie, P. Lio, and A. T. Lawniczak. A Comparative Study of Noise Effect on Wavelet Based De-nosing Methods, Proc. of the IEEE TICSTH 2009, pp 991-999.
    • Proc. of the IEEE TICSTH 2009 , pp. 991-999
    • Xie, S.1    Lio, P.2    Lawniczak, A.T.3
  • 12
    • 84950632109 scopus 로고
    • Objective Criteria for the Evaluation of Clustering Methods
    • M. Rand, Objective Criteria for the Evaluation of Clustering Methods, Journal of the American Statistical Association, Vol. 66, No. 336, pp. 846-850, 1971.
    • (1971) Journal of the American Statistical Association , vol.66 , Issue.336 , pp. 846-850
    • Rand, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.