-
1
-
-
65349162795
-
-
For reviews of MOFs, see
-
For reviews of MOFs, see: Tranchemontagne, D. J.; Mendoza-Corteés, J. L.; O'Keeffe, M.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38, 1257
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 1257
-
-
Tranchemontagne, D.J.1
Mendoza-Corteés, J.L.2
O'Keeffe, M.3
Yaghi, O.M.4
-
2
-
-
0038128307
-
-
Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Nature 2003, 423, 705
-
(2003)
Nature
, vol.423
, pp. 705
-
-
Yaghi, O.M.1
O'Keeffe, M.2
Ockwig, N.W.3
Chae, H.K.4
Eddaoudi, M.5
Kim, J.6
-
3
-
-
0037127013
-
-
Eddaoudi, M.; Kim, J.; Rosi, N. L.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295, 469
-
(2002)
Science
, vol.295
, pp. 469
-
-
Eddaoudi, M.1
Kim, J.2
Rosi, N.L.3
Vodak, D.4
Wachter, J.5
O'Keeffe, M.6
Yaghi, O.M.7
-
5
-
-
65149084322
-
-
Murray, L. J.; Dinc?, M.; Long, J. R. Chem. Soc. Rev. 2009, 38, 1294
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 1294
-
-
Murray, L.J.1
Dinc, M.2
Long, J.R.3
-
7
-
-
78049347869
-
-
Farha, O. K.; Oezguer, Y. A.; Eryazici, I.; Malliakas, C. D.; Hauser, B. G.; Kanatzidis, M. G.; Nguyen, S. T.; Snurr, R. Z.; Hupp, J. T. Nat. Chem. 2010, 2, 944
-
(2010)
Nat. Chem.
, vol.2
, pp. 944
-
-
Farha, O.K.1
Oezguer, Y.A.2
Eryazici, I.3
Malliakas, C.D.4
Hauser, B.G.5
Kanatzidis, M.G.6
Nguyen, S.T.7
Snurr, R.Z.8
Hupp, J.T.9
-
8
-
-
65349140088
-
-
Ma, L.; Abney, C.; Lin, W. Chem. Soc. Rev. 2009, 38, 1248
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 1248
-
-
Ma, L.1
Abney, C.2
Lin, W.3
-
9
-
-
65349147078
-
-
Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 1450
-
-
Lee, J.1
Farha, O.K.2
Roberts, J.3
Scheidt, K.A.4
Nguyen, S.T.5
Hupp, J.T.6
-
10
-
-
0001412882
-
-
Seo, J. S.; Whang, D.; Lee, H.; Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982
-
(2000)
Nature
, vol.404
, pp. 982
-
-
Seo, J.S.1
Whang, D.2
Lee, H.3
Jun, S.I.4
Oh, J.5
Jeon, Y.J.6
Kim, K.7
-
11
-
-
77957287036
-
-
Liqing, M.; Falkowski, J. M.; Abney, C.; Lin, W. Nat. Chem. 2010, 2, 838
-
(2010)
Nat. Chem.
, vol.2
, pp. 838
-
-
Liqing, M.1
Falkowski, J.M.2
Abney, C.3
Lin, W.4
-
12
-
-
65349090712
-
-
Allendorf, M. D.; Bauer, D. A.; Bhakta, R. K.; Houk, R. J. T. Chem. Soc. Rev. 2009, 38, 1330
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 1330
-
-
Allendorf, M.D.1
Bauer, D.A.2
Bhakta, R.K.3
Houk, R.J.T.4
-
13
-
-
70349784890
-
-
Lan, A.; Li, K.; Wu, H.; Olson, D. H.; Emge, T. J.; Ki, W.; Hong, M.; Li, J. Angew. Chem., Int. Ed. 2009, 48, 2334
-
(2009)
Angew. Chem., Int. Ed.
, vol.48
, pp. 2334
-
-
Lan, A.1
Li, K.2
Wu, H.3
Olson, D.H.4
Emge, T.J.5
Ki, W.6
Hong, M.7
Li, J.8
-
14
-
-
77951931069
-
-
Odbadrakh, K.; Lewis, J. P.; Nicholson, D. M. J. Phys. Chem. C 2010, 114, 7535
-
(2010)
J. Phys. Chem. C
, vol.114
, pp. 7535
-
-
Odbadrakh, K.1
Lewis, J.P.2
Nicholson, D.M.3
-
15
-
-
79959867145
-
-
In contrast, discrete molecules and organometallic species have been manipulated for decades by organic and inorganic chemists via step-by-step synthetic strategies.
-
In contrast, discrete molecules and organometallic species have been manipulated for decades by organic and inorganic chemists via step-by-step synthetic strategies.
-
-
-
-
16
-
-
33746301197
-
-
For an example of a complex hierarchical MOF assembled via "one-pot" synthesis, see
-
For an example of a complex hierarchical MOF assembled via "one-pot" synthesis, see: Sudik, A. C.; Cǒteé, A. P.; Wong-Foy, A. G.; O'Keeffe, M.; Yaghi, O. M. Angew. Chem., Int. Ed. 2006, 45, 2528
-
(2006)
Angew. Chem., Int. Ed.
, vol.45
, pp. 2528
-
-
Sudik, A.C.1
Cǒteé, A.P.2
Wong-Foy, A.G.3
O'Keeffe, M.4
Yaghi, O.M.5
-
17
-
-
67849131059
-
-
Das, S.; Kim, H.; Kim, K. J. Am. Chem. Soc. 2009, 131, 3814
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 3814
-
-
Das, S.1
Kim, H.2
Kim, K.3
-
18
-
-
65349143171
-
-
For reviews of postsynthetic modification, see
-
For reviews of postsynthetic modification, see: Wang, Z.; Cohen, S. M. Chem. Soc. Rev. 2009, 38, 1315
-
(2009)
Chem. Soc. Rev.
, vol.38
, pp. 1315
-
-
Wang, Z.1
Cohen, S.M.2
-
21
-
-
53249155273
-
-
Song, Y.-F.; Cronin, L. Angew. Chem., Int. Ed. 2008, 47, 4635
-
(2008)
Angew. Chem., Int. Ed.
, vol.47
, pp. 4635
-
-
Song, Y.-F.1
Cronin, L.2
-
23
-
-
0033568015
-
-
Kiang, Y.-H.; Gardner, G. B.; Lee, S.; Xu, Z.; Lobkovsky, E. J. Am. Chem. Soc. 1999, 121, 8204
-
(1999)
J. Am. Chem. Soc.
, vol.121
, pp. 8204
-
-
Kiang, Y.-H.1
Gardner, G.B.2
Lee, S.3
Xu, Z.4
Lobkovsky, E.5
-
25
-
-
70349917518
-
-
Tanabe, K. K.; Cohen, S. M. Angew. Chem., Int. Ed. 2009, 48, 7424
-
(2009)
Angew. Chem., Int. Ed.
, vol.48
, pp. 7424
-
-
Tanabe, K.K.1
Cohen, S.M.2
-
26
-
-
77955809099
-
-
Oisaki, K.; Li, Z.; Furukawa, H.; Czaja, A. U.; Yaghi, O. M. J. Am. Chem. Soc. 2010, 132, 9262
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 9262
-
-
Oisaki, K.1
Li, Z.2
Furukawa, H.3
Czaja, A.U.4
Yaghi, O.M.5
-
27
-
-
6344291449
-
-
Kitaura, R.; Iwahori, F.; Matsuda, R.; Kitagawa, S.; Kubota, Y.; Takata, M.; Kobayashi, T. C. Inorg. Chem. 2004, 43, 6522
-
(2004)
Inorg. Chem.
, vol.43
, pp. 6522
-
-
Kitaura, R.1
Iwahori, F.2
Matsuda, R.3
Kitagawa, S.4
Kubota, Y.5
Takata, M.6
Kobayashi, T.C.7
-
28
-
-
75249104098
-
-
Chen, Z.; Xiang, S.; Zhao, D.; Chen, B. Cryst. Growth Des. 2009, 9, 5293
-
(2009)
Cryst. Growth Des.
, vol.9
, pp. 5293
-
-
Chen, Z.1
Xiang, S.2
Zhao, D.3
Chen, B.4
-
29
-
-
69949174738
-
-
Li, J.-R.; Timmons, D. J.; Zhou, H.-C. J. Am. Chem. Soc. 2009, 131, 6368
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 6368
-
-
Li, J.-R.1
Timmons, D.J.2
Zhou, H.-C.3
-
32
-
-
63049119814
-
-
Choi, E.-Y.; Wray, C. A.; Hu, C.; Choe, W. CrystEngComm 2009, 11, 553
-
(2009)
CrystEngComm
, vol.11
, pp. 553
-
-
Choi, E.-Y.1
Wray, C.A.2
Hu, C.3
Choe, W.4
-
33
-
-
61849120222
-
-
Choi, E.-Y.; Barron, P. M.; Novotny, R. W.; Son, H.-T.; Hu, C.; Choe, W. Inorg. Chem. 2009, 48, 426
-
(2009)
Inorg. Chem.
, vol.48
, pp. 426
-
-
Choi, E.-Y.1
Barron, P.M.2
Novotny, R.W.3
Son, H.-T.4
Hu, C.5
Choe, W.6
-
34
-
-
67650080877
-
-
Chung, H.; Barron, P. M.; Novotny, R. W.; Son, H.-T.; Hu, C.; Choe, W. Cryst. Growth Des. 2009, 9, 3327
-
(2009)
Cryst. Growth Des.
, vol.9
, pp. 3327
-
-
Chung, H.1
Barron, P.M.2
Novotny, R.W.3
Son, H.-T.4
Hu, C.5
Choe, W.6
-
35
-
-
79959861240
-
-
The binding energies for Zn - N and Zn - O were estimated to be 150 and 360 kJ/mol, respectively (see ref 1a).
-
The binding energies for Zn - N and Zn - O were estimated to be 150 and 360 kJ/mol, respectively (see ref 1a).
-
-
-
-
36
-
-
79959887003
-
-
For crystallographic data for PPF-27, see the SI.
-
For crystallographic data for PPF-27, see the SI.
-
-
-
-
37
-
-
0038605521
-
-
Ozser, M. E.; Uzun, D.; Elci, I.; Icil, H.; Demuth, M. Photochem. Photobiol. ci. 2003, 2, 218
-
(2003)
Photochem. Photobiol. Sci.
, vol.2
, pp. 218
-
-
Ozser, M.E.1
Uzun, D.2
Elci, I.3
Icil, H.4
Demuth, M.5
-
38
-
-
4243064091
-
-
Erten, ?.; Posokhov, Y.; Alp, S.; Cli, S. Dyes Pigm. 2005, 64, 171
-
(2005)
Dyes Pigm.
, vol.64
, pp. 171
-
-
Erten1
Posokhov, Y.2
Alp, S.3
Cli, S.4
-
40
-
-
61849096702
-
-
Wang, Z.; Tanabe, K. K.; Cohen, S. M. Inorg. Chem. 2009, 48, 296
-
(2009)
Inorg. Chem.
, vol.48
, pp. 296
-
-
Wang, Z.1
Tanabe, K.K.2
Cohen, S.M.3
-
41
-
-
77954837279
-
-
Kondo, M.; Furukawa, S.; Hirai, K.; Kitagawa, S. Angew. Chem., Int. Ed. 2010, 49, 5327
-
(2010)
Angew. Chem., Int. Ed.
, vol.49
, pp. 5327
-
-
Kondo, M.1
Furukawa, S.2
Hirai, K.3
Kitagawa, S.4
-
42
-
-
79959910133
-
-
Lateral movement of a paddlewheel framework was previously observed by Kitagawa and co-workers. (12)
-
Lateral movement of a paddlewheel framework was previously observed by Kitagawa and co-workers. (12)
-
-
-
-
43
-
-
33748795337
-
-
- anions in the remaining layers (see:) This report, however, provided only PXRD data to support their discussion. The use of MOFs has enabled us to report single-crystal information on this phenomenon. Herein we have reported transformations in which a longer linker is replaced with a shorter linker, resulting in a contraction between layers. Interestingly, O'Hare's report indicates that similar transformations involving replacement of a shorter linker with a longer linker could happen, as seen from the replacement of the shorter succinate and tartrate anions with the longer adipate anion.
-
- anions in the remaining layers (see: Feng, Y. J.; Williams, G. R.; Lerous, F.; Taviot-Gueho, C.; O'Hare, D. Chem. Mater. 2006, 18, 4312) This report, however, provided only PXRD data to support their discussion. The use of MOFs has enabled us to report single-crystal information on this phenomenon. Herein we have reported transformations in which a longer linker is replaced with a shorter linker, resulting in a contraction between layers. Interestingly, O'Hare's report indicates that similar transformations involving replacement of a shorter linker with a longer linker could happen, as seen from the replacement of the shorter succinate and tartrate anions with the longer adipate anion.
-
(2006)
Chem. Mater.
, vol.18
, pp. 4312
-
-
Feng, Y.J.1
Williams, G.R.2
Lerous, F.3
Taviot-Gueho, C.4
O'Hare, D.5
-
44
-
-
33644787213
-
-
Porosity is conventionally defined by two parameters: demonstration of permeability and retention of structure upon guest removal/exchange (see:) The observation of pillar molecules moving into solution during the transformation indicates the permeability of the structure, similar to reports in which porosity was proved by inclusion of dye molecules into the crystal, as demonstrated by Lin (see:; J. Am. Chem. Soc. 2008, 13834) The 2D square-grid layers retained their structure during the transformation, as exemplified by the templating effect. Had the structure fully dissolved and recrystallized, contamination by either 2D or 3D species would be evident in the PXRD pattern.
-
Porosity is conventionally defined by two parameters: demonstration of permeability and retention of structure upon guest removal/exchange (see: Barbour, L. J. Chem. Commun. 2006, 1163) The observation of pillar molecules moving into solution during the transformation indicates the permeability of the structure, similar to reports in which porosity was proved by inclusion of dye molecules into the crystal, as demonstrated by Lin (see: Ma, L.; Lin, W. J. Am. Chem. Soc. 2008, 130, 13834) The 2D square-grid layers retained their structure during the transformation, as exemplified by the templating effect. Had the structure fully dissolved and recrystallized, contamination by either 2D or 3D species would be evident in the PXRD pattern.
-
(2006)
Chem. Commun.
, vol.130
, pp. 1163
-
-
Barbour, L.J.1
Ma, L.2
Lin, W.3
-
46
-
-
61349139884
-
-
Furukawa, S.; Hirai, K.; Nakagawa, K.; Takashima, Y.; Matsuda, R.; Tsuruoka, T.; Kondo, M.; Haruki, R.; Tanaka, D.; Sakamoto, H.; Shimomura, S.; Sakata, O.; Kitagawa, S. Angew. Chem., Int. Ed. 2009, 48, 1766
-
(2009)
Angew. Chem., Int. Ed.
, vol.48
, pp. 1766
-
-
Furukawa, S.1
Hirai, K.2
Nakagawa, K.3
Takashima, Y.4
Matsuda, R.5
Tsuruoka, T.6
Kondo, M.7
Haruki, R.8
Tanaka, D.9
Sakamoto, H.10
Shimomura, S.11
Sakata, O.12
Kitagawa, S.13
-
47
-
-
69249154149
-
-
Furukawa, S.; Hirai, K.; Takasima, Y.; Nakagawa, K.; Kondo, M.; Tsuruoka, T.; Sakata, O.; Kitagawa, S. Chem. Commun. 2009, 5097
-
(2009)
Chem. Commun.
, pp. 5097
-
-
Furukawa, S.1
Hirai, K.2
Takasima, Y.3
Nakagawa, K.4
Kondo, M.5
Tsuruoka, T.6
Sakata, O.7
Kitagawa, S.8
|