-
1
-
-
0031187873
-
A Bayesian/information theoretic model of learning to learn via multiple task sampling
-
J. Baxter. 1997. A bayesian/information theoretic model of learning to learn via multiple task sampling. In Machine Learning, volume 28.
-
(1997)
Machine Learning
, vol.28
-
-
Baxter, J.1
-
2
-
-
0031189914
-
Multitask learning
-
R. Caruana. 1997. Multitask learning. In Machine Learning, volume 28.
-
(1997)
Machine Learning
, vol.28
-
-
Caruana, R.1
-
3
-
-
84890506043
-
Adaptation of a maximum entropy capitalizer: Little data can help a lot
-
Ciprian Chelba and Alex Acero. 2004. Adaptation of a maximum entropy capitalizer: Little data can help a lot. In EMNLP 2004.
-
(2004)
EMNLP 2004
-
-
Chelba, C.1
Acero, A.2
-
4
-
-
4043082208
-
Head-driven statistical models for natural language parsing
-
DOI 10.1162/089120103322753356
-
M. Collins. 2003. Head-driven statistical models for natural language parsing. Computational Linguistics, 29(4):589-637. (Pubitemid 39056498)
-
(2003)
Computational Linguistics
, vol.29
, Issue.4
, pp. 589-637
-
-
Collins, M.1
-
8
-
-
80053255602
-
Convex point estimation using undirected Bayesian transfer hierarchies
-
Gal Elidan, Benjamin Packer, Geremy Heitz, and Daphne Koller. 2008. Convex point estimation using undirected bayesian transfer hierarchies. In UAI 2008.
-
(2008)
UAI 2008
-
-
Elidan, G.1
Packer, B.2
Heitz, G.3
Koller, D.4
-
10
-
-
72449211489
-
Efficient, feature-based conditional random field parsing
-
Jenny Rose Finkel and Christopher D. Manning. 2008. Efficient, feature-based conditional random field parsing. In ACL/HLT-2008.
-
(2008)
ACL/HLT-2008
-
-
Finkel, J.R.1
Manning, C.D.2
-
11
-
-
84859918687
-
Incorporating non-local information into information extraction systems by gibbs sampling
-
Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. Incorporating non-local information into information extraction systems by gibbs sampling. In ACL 2005.
-
(2005)
ACL 2005
-
-
Finkel, J.R.1
Grenager, T.2
Manning, C.3
-
15
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In ICML 2001.
-
(2001)
ICML 2001
-
-
Lafferty, J.D.1
McCallum, A.2
Pereira Fernando, C.N.3
-
17
-
-
84859925125
-
Online large-margin training of dependency parsers
-
Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005. Online large-margin training of dependency parsers. In ACL 2005.
-
(2005)
ACL 2005
-
-
McDonald, R.1
Crammer, K.2
Pereira, F.3
-
18
-
-
33750032384
-
An introduction to conditional random fields for relational learning
-
Lise Getoor and Ben Taskar, editors MIT Press
-
Charles Sutton and Andrew McCallum. 2007. An introduction to conditional random fields for relational learning. In Lise Getoor and Ben Taskar, editors, Introduction to Statistical Relational Learning. MIT Press.
-
(2007)
Introduction to Statistical Relational Learning
-
-
Sutton, C.1
McCallum, A.2
-
19
-
-
33846487387
-
Multi-task learning for classification with dirichlet process priors
-
Ya Xue, Xuejun Liao, Lawrence Carin, and Balaji Krish-napuram. 2007. Multi-task learning for classification with dirichlet process priors. J. Mach. Learn. Res., 8.
-
(2007)
J. Mach. Learn. Res.
, pp. 8
-
-
Xue, Y.1
Liao, X.2
Carin, L.3
Krish-Napuram, B.4
|