메뉴 건너뛰기




Volumn 107, Issue 2, 2011, Pages 276-282

Combining artificial neural networks with data fusion to analyze overlapping spectra of nitroaniline isomers

Author keywords

Data fusion; Generalized regression neural network; Multivariate calibration; Ultraviolet spectral data; Wavelet multiscale nature

Indexed keywords

2 NITROANILINE; 3 NITROANILINE; 4 NITROANILINE; ANILINE DERIVATIVE; UNCLASSIFIED DRUG;

EID: 79959774062     PISSN: 01697439     EISSN: 18733239     Source Type: Journal    
DOI: 10.1016/j.chemolab.2011.04.012     Document Type: Article
Times cited : (8)

References (35)
  • 1
    • 39849096549 scopus 로고    scopus 로고
    • Chemometrics in analytical chemistry
    • Einax J.W. Chemometrics in analytical chemistry. Anal. Bioanal. Chem. 2008, 390:225-1226.
    • (2008) Anal. Bioanal. Chem. , vol.390 , pp. 225-1226
    • Einax, J.W.1
  • 2
    • 59349116416 scopus 로고    scopus 로고
    • Simultaneous kinetic spectrophotometric analysis of five synthetic food colorants with the aid of chemometrics
    • Ni Y.N., Wang Y., Kokot S. Simultaneous kinetic spectrophotometric analysis of five synthetic food colorants with the aid of chemometrics. Talanta 2009, 78:432-441.
    • (2009) Talanta , vol.78 , pp. 432-441
    • Ni, Y.N.1    Wang, Y.2    Kokot, S.3
  • 3
    • 58149203252 scopus 로고    scopus 로고
    • Support vector machines and its application in chemistry
    • Li H.D., Liang Y.Z., Xu Q.S. Support vector machines and its application in chemistry. Chemom. Intell. Lab. Syst. 2009, 95:188-198.
    • (2009) Chemom. Intell. Lab. Syst. , vol.95 , pp. 188-198
    • Li, H.D.1    Liang, Y.Z.2    Xu, Q.S.3
  • 4
    • 40849123845 scopus 로고    scopus 로고
    • An ensemble of Monte Carlo uninformative variable elimination for wavelength selection
    • Han Q.J., Wu H.L., Cai C.B., Xu L., Yu R.Q. An ensemble of Monte Carlo uninformative variable elimination for wavelength selection. Anal. Chim. Acta 2008, 612:121-125.
    • (2008) Anal. Chim. Acta , vol.612 , pp. 121-125
    • Han, Q.J.1    Wu, H.L.2    Cai, C.B.3    Xu, L.4    Yu, R.Q.5
  • 5
    • 33646100282 scopus 로고    scopus 로고
    • A primary study on resolution of overlapping GC-MS signal using mean-field approach independent component analysis
    • Wang G.Q., Cai W.S., Shao X.G. A primary study on resolution of overlapping GC-MS signal using mean-field approach independent component analysis. Chemom. Intell. Lab. Syst. 2006, 82:137-144.
    • (2006) Chemom. Intell. Lab. Syst. , vol.82 , pp. 137-144
    • Wang, G.Q.1    Cai, W.S.2    Shao, X.G.3
  • 6
    • 33646081033 scopus 로고    scopus 로고
    • Resolution of overlapping capillary electrophoresis peaks by using chemometric analysis: improved quantification by using internal standard
    • Zhang F., Li H. Resolution of overlapping capillary electrophoresis peaks by using chemometric analysis: improved quantification by using internal standard. Chemom. Intell. Lab. Syst. 2006, 82:184-192.
    • (2006) Chemom. Intell. Lab. Syst. , vol.82 , pp. 184-192
    • Zhang, F.1    Li, H.2
  • 7
    • 0034627919 scopus 로고    scopus 로고
    • Simultaneous quantitative analysis of overlapping spectrophotometric signals using wavelet multiresolution analysis and partial least squares
    • Ren S.X., Gao L. Simultaneous quantitative analysis of overlapping spectrophotometric signals using wavelet multiresolution analysis and partial least squares. Talanta 2000, 50:1163-1173.
    • (2000) Talanta , vol.50 , pp. 1163-1173
    • Ren, S.X.1    Gao, L.2
  • 8
    • 27744539849 scopus 로고    scopus 로고
    • Resolve of overlapping voltammetric signals in using a wavelet packet transform based Elman recurrent neural network
    • Ren S.X., Gao L. Resolve of overlapping voltammetric signals in using a wavelet packet transform based Elman recurrent neural network. J. Electroanal. Chem. 2006, 586:23-30.
    • (2006) J. Electroanal. Chem. , vol.586 , pp. 23-30
    • Ren, S.X.1    Gao, L.2
  • 9
    • 77953289792 scopus 로고    scopus 로고
    • Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods
    • Gao L., Ren S.X. Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods. Spectrochim. Acta, Part A 2005, 73:960-965.
    • (2005) Spectrochim. Acta, Part A , vol.73 , pp. 960-965
    • Gao, L.1    Ren, S.X.2
  • 10
    • 61349175202 scopus 로고    scopus 로고
    • Multi-core computing: a novel accelerating method for chemometrics calculation
    • Zhang Z.M., Liang Y.Z., Xu Q.S. Multi-core computing: a novel accelerating method for chemometrics calculation. Chemom. Intell. Lab. Syst. 2006, 96:94-97.
    • (2006) Chemom. Intell. Lab. Syst. , vol.96 , pp. 94-97
    • Zhang, Z.M.1    Liang, Y.Z.2    Xu, Q.S.3
  • 11
    • 34548537453 scopus 로고    scopus 로고
    • Use of different artificial neural networks to resolve binary blends of monocultivar Italian olive oils
    • Marini F., Magri A.L., Bucci R., Magri A.D. Use of different artificial neural networks to resolve binary blends of monocultivar Italian olive oils. Anal. Chim. Acta 2007, 599:232-240.
    • (2007) Anal. Chim. Acta , vol.599 , pp. 232-240
    • Marini, F.1    Magri, A.L.2    Bucci, R.3    Magri, A.D.4
  • 12
    • 16644394005 scopus 로고    scopus 로고
    • Wavelet packet transform and artificial neural network applied to simultaneous kinetic multicomponent determination
    • Ren S.X., Gao L. Wavelet packet transform and artificial neural network applied to simultaneous kinetic multicomponent determination. Anal. Bioanal. Chem. 2004, 378:1392-1398.
    • (2004) Anal. Bioanal. Chem. , vol.378 , pp. 1392-1398
    • Ren, S.X.1    Gao, L.2
  • 13
    • 1542721575 scopus 로고    scopus 로고
    • Classification of ecstasy tablets using trace metal analysis with the application of chemometric procedures and artificial neural network algorithms
    • Waddell R.J.H., NicDaeid N., Littlejohn D. Classification of ecstasy tablets using trace metal analysis with the application of chemometric procedures and artificial neural network algorithms. Analyst 2004, 129:235-240.
    • (2004) Analyst , vol.129 , pp. 235-240
    • Waddell, R.J.H.1    NicDaeid, N.2    Littlejohn, D.3
  • 14
    • 0025206332 scopus 로고
    • Probabilistic neural networks
    • Specht D.F. Probabilistic neural networks. Neural Netw. 1990, 3:109-118.
    • (1990) Neural Netw. , vol.3 , pp. 109-118
    • Specht, D.F.1
  • 15
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2:568-576.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 16
    • 84990575058 scopus 로고
    • Orthogonal bases of compactly supported wavelets
    • Daubechies I. Orthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 1988, 41:909-996.
    • (1988) Commun. Pure Appl. Math. , vol.41 , pp. 909-996
    • Daubechies, I.1
  • 17
    • 0026686049 scopus 로고
    • Singularity detection and processing with wavelets
    • Mallat S., Hwang W.L. Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 1992, 38:617-643.
    • (1992) IEEE Trans. Inf. Theory , vol.38 , pp. 617-643
    • Mallat, S.1    Hwang, W.L.2
  • 18
    • 8544283059 scopus 로고    scopus 로고
    • Principal-component analysis of multiscale data for process monitoring and fault diagnosis
    • Yoon S., MacGregor J.F. Principal-component analysis of multiscale data for process monitoring and fault diagnosis. AIChE J. 2004, 50:2891-2903.
    • (2004) AIChE J. , vol.50 , pp. 2891-2903
    • Yoon, S.1    MacGregor, J.F.2
  • 19
    • 0032815554 scopus 로고    scopus 로고
    • Multiscale cluster analysis
    • Alsberg B.K. Multiscale cluster analysis. Anal. Chem. 1999, 71:3092-3100.
    • (1999) Anal. Chem. , vol.71 , pp. 3092-3100
    • Alsberg, B.K.1
  • 20
    • 33847136080 scopus 로고    scopus 로고
    • Sensor fusion and data fusion-mapping and reconstruction
    • Ruhm K.H. Sensor fusion and data fusion-mapping and reconstruction. Measurement 2007, 40:145-157.
    • (2007) Measurement , vol.40 , pp. 145-157
    • Ruhm, K.H.1
  • 21
    • 27844460052 scopus 로고    scopus 로고
    • Combination of multiple neural networks using data fusion techniques for enhanced nonlinear process modeling
    • Ahmad Z., Zhang J. Combination of multiple neural networks using data fusion techniques for enhanced nonlinear process modeling. Comput. Chem. Eng. 2005, 30:295-308.
    • (2005) Comput. Chem. Eng. , vol.30 , pp. 295-308
    • Ahmad, Z.1    Zhang, J.2
  • 22
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • Donoho D.L. De-noising by soft-thresholding. IEEE Trans. Inf. Theory 1995, 41:613-627.
    • (1995) IEEE Trans. Inf. Theory , vol.41 , pp. 613-627
    • Donoho, D.L.1
  • 25
    • 0348116372 scopus 로고    scopus 로고
    • Resolution of simultaneous kinetic spectrophotometric processes by full time scale techniques in the Fourier domain
    • Ren S.X., Gao L. Resolution of simultaneous kinetic spectrophotometric processes by full time scale techniques in the Fourier domain. Microchem. J. 1998, 17:151-161.
    • (1998) Microchem. J. , vol.17 , pp. 151-161
    • Ren, S.X.1    Gao, L.2
  • 26
    • 3042670236 scopus 로고    scopus 로고
    • The Hankel transform and some of its properties
    • Layman J.W. The Hankel transform and some of its properties. J. Integer Seq. 2001, 4:1-11.
    • (2001) J. Integer Seq. , vol.4 , pp. 1-11
    • Layman, J.W.1
  • 27
    • 0026320827 scopus 로고
    • Hadamard transform spectrometry
    • Dyer S.A. Hadamard transform spectrometry. Chemom. Intell. Lab. Syst. 1991, 12:101-115.
    • (1991) Chemom. Intell. Lab. Syst. , vol.12 , pp. 101-115
    • Dyer, S.A.1
  • 28
    • 0000044932 scopus 로고    scopus 로고
    • The discrete cosine transform
    • Strang G. The discrete cosine transform. SIAM Rev. 1999, 41:135-147.
    • (1999) SIAM Rev. , vol.41 , pp. 135-147
    • Strang, G.1
  • 29
    • 0042553279 scopus 로고
    • Smoothing and differentiation of data by simplified least squares procedures
    • Savitzky A., Golay M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36:1627-1639.
    • (1964) Anal. Chem. , vol.36 , pp. 1627-1639
    • Savitzky, A.1    Golay, M.J.E.2
  • 31
    • 0028820823 scopus 로고
    • Related versions of multiplicative scatter correction method for preprocessing spectroscopic data
    • Helland I.S., Nxs T., Isaksson T. Related versions of multiplicative scatter correction method for preprocessing spectroscopic data. Chemom. Intell. Lab. Syst. 1995, 29:233-241.
    • (1995) Chemom. Intell. Lab. Syst. , vol.29 , pp. 233-241
    • Helland, I.S.1    Nxs, T.2    Isaksson, T.3
  • 32
    • 0033580022 scopus 로고    scopus 로고
    • Simultaneous spectrophotometric determination of four metals by the kernel partial least squares method
    • Gao L., Ren S.X. Simultaneous spectrophotometric determination of four metals by the kernel partial least squares method. Chemom. Intell. Lab. Syst. 1999, 45:87-93.
    • (1999) Chemom. Intell. Lab. Syst. , vol.45 , pp. 87-93
    • Gao, L.1    Ren, S.X.2
  • 33
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function network
    • Chen S., Cowan C.F., Grant P.M. Orthogonal least squares learning algorithm for radial basis function network. IEEE Trans. Neural Netw. 1991, 2:302-309.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.F.2    Grant, P.M.3
  • 34
    • 12844283500 scopus 로고    scopus 로고
    • A two-stage evolutionary algorithm for variable selection in the development of RBF neural network models
    • Alexandridis A., Patrinos P., Sarimveis H., Tsekouras G. A two-stage evolutionary algorithm for variable selection in the development of RBF neural network models. Chemom. Intell. Lab. Syst. 2005, 75:149-162.
    • (2005) Chemom. Intell. Lab. Syst. , vol.75 , pp. 149-162
    • Alexandridis, A.1    Patrinos, P.2    Sarimveis, H.3    Tsekouras, G.4
  • 35
    • 79952074369 scopus 로고    scopus 로고
    • Improvement of the prediction ability of multivariate calibration by a method based on the combination of data fusion and least squares support vector machines
    • Ren S.X., Gao L. Improvement of the prediction ability of multivariate calibration by a method based on the combination of data fusion and least squares support vector machines. Analyst 2011, 136:1252-1262.
    • (2011) Analyst , vol.136 , pp. 1252-1262
    • Ren, S.X.1    Gao, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.