-
3
-
-
8744307994
-
Multimodel inference: Understanding AIC and BIC in model selection
-
DOI 10.1177/0049124104268644
-
K.P. Burnham, and D.R. Anderson Multimodel inference: understanding AIC and BIC in model selection Sociological Methods and Research 33 2004 261 304 (Pubitemid 39519124)
-
(2004)
Sociological Methods and Research
, vol.33
, Issue.2
, pp. 261-304
-
-
Burnham, K.P.1
Anderson, D.R.2
-
7
-
-
0348186338
-
-
Cambridge University Press Cambridge
-
A.C. Davison Statistical models 2003 Cambridge University Press Cambridge
-
(2003)
Statistical Models
-
-
Davison, A.C.1
-
9
-
-
0001159321
-
The impact of model selection on inference in linear regression
-
C.M. Hurvich, and C.-L. Tsai The impact of model selection on inference in linear regression The American Statistician 44 1990 214 217
-
(1990)
The American Statistician
, vol.44
, pp. 214-217
-
-
Hurvich, C.M.1
Tsai, C.-L.2
-
10
-
-
70349119250
-
Regression and time series model selection in small samples
-
C.M. Hurvich, and C.-L. Tsai Regression and time series model selection in small samples Biometrika 76 1989 297 307
-
(1989)
Biometrika
, vol.76
, pp. 297-307
-
-
Hurvich, C.M.1
Tsai, C.-L.2
-
11
-
-
33845360384
-
Model weights and the foundations of multimodel inference
-
DOI 10.1890/0012-9658(2006)87[2626:MWATFO]2.0.CO;2
-
W.A. Link, and R.J. Barker Model weights and the foundations of multimodel inference Ecology 87 2006 2626 2635 (Pubitemid 44885973)
-
(2006)
Ecology
, vol.87
, Issue.10
, pp. 2626-2635
-
-
Link, W.A.1
Barker, R.J.2
-
12
-
-
33747474436
-
Calibrated Bayes: A Bayes/frequentist roadmap
-
DOI 10.1198/000313006X117837
-
R.J. Little Calibrated Bayes: a Bayes/frequentist roadmap American Statistician 60 2006 213 223 (Pubitemid 44257513)
-
(2006)
American Statistician
, vol.60
, Issue.3
, pp. 213-223
-
-
Little, R.J.1
-
16
-
-
84907095419
-
R: A language and environment for statistical computing
-
R Development Core Team Vienna, Austria. ISBN 3-900051-07-0, URL
-
R Development Core Team, 2009. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.
-
(2009)
R Foundation for Statistical Computing
-
-
-
18
-
-
84963178774
-
Further analysis of the data by Akaike's information criterion and the finite corrections
-
N. Sugiura Further analysis of the data by Akaike's information criterion and the finite corrections Communications in Statistics, Theory and Methods A7 1978 13 26
-
(1978)
Communications in Statistics, Theory and Methods
, vol.7
, pp. 13-26
-
-
Sugiura, N.1
-
19
-
-
0040007375
-
Bayesian model averaging in proportional hazard models: Assessing the risk of a stroke
-
C.T. Volinsky, D. Madigan, A.E. Raftery, and R.A. Kronmal Bayesian model averaging in proportional hazard models: assessing the risk of a stroke Journal of the Royal Statistical Society, Series C 46 1997 433 448
-
(1997)
Journal of the Royal Statistical Society, Series C
, vol.46
, pp. 433-448
-
-
Volinsky, C.T.1
Madigan, D.2
Raftery, A.E.3
Kronmal, R.A.4
-
20
-
-
34447318014
-
Comparing model averaging with other model selection strategies for benchmark dose estimation
-
M.W. Wheeler, and A.J. Bailer Comparing model averaging with other model selection strategies for benchmark dose estimation Environmental and Ecological Statistics 16 2009 37 51
-
(2009)
Environmental and Ecological Statistics
, vol.16
, pp. 37-51
-
-
Wheeler, M.W.1
Bailer, A.J.2
|