메뉴 건너뛰기




Volumn 23, Issue 8, 2011, Pages 2074-2100

A regularized correntropy framework for robust pattern recognition

Author keywords

[No Author keywords available]

Indexed keywords


EID: 79959633868     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/NECO_a_00155     Document Type: Letter
Times cited : (113)

References (66)
  • 2
    • 0031651559 scopus 로고    scopus 로고
    • Eigentracking: Robust matching and tracking of articulated objects using a view-based representation
    • Black, M., & Jepson, A. (1998). Eigentracking: Robust matching and tracking of articulated objects using a view-based representation. International Journal of Computer Vision, 26(1), 63-84.
    • (1998) International Journal of Computer Vision , vol.26 , Issue.1 , pp. 63-84
    • Black, M.1    Jepson, A.2
  • 5
  • 6
    • 0036941556 scopus 로고    scopus 로고
    • Discriminant waveletfaces and nearest feature classifiers for face recognition
    • Chien, J., &Wu, C. (2002). Discriminant waveletfaces and nearest feature classifiers for face recognition. IEEE Trans. on Pattern Analysis andMachine Intelligence, 24(12), 1644-1649.
    • (2002) IEEE Trans. on Pattern Analysis andMachine Intelligence , vol.24 , Issue.12 , pp. 1644-1649
    • Chien, J.1    Wu, C.2
  • 8
    • 0035729565 scopus 로고    scopus 로고
    • Robust linear discrimination analysis using sestimators
    • Croux, C., & Dehon, C. (2001). Robust linear discrimination analysis using sestimators. Canadian J. Statistics, 29, 473-492.
    • (2001) Canadian J. Statistics , vol.29 , pp. 473-492
    • Croux, C.1    Dehon, C.2
  • 11
    • 33646365077 scopus 로고    scopus 로고
    • For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution
    • Donoho, D. (2006b). For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Communications on Pure and Applied Mathematics, 59(6), 797-829.
    • (2006) Communications on Pure and Applied Mathematics , vol.59 , Issue.6 , pp. 797-829
    • Donoho, D.1
  • 14
    • 0031499747 scopus 로고    scopus 로고
    • High-breakdown linear discriminant analysis
    • Hawkins, D.,&McLachlan, G. (1997). High-breakdown linear discriminant analysis. J. Am. Statistical Assoc., 92, 136-143.
    • (1997) J. Am. Statistical Assoc. , vol.92 , pp. 136-143
    • Hawkins, D.1    McLachlan, G.2
  • 17
    • 77952546541 scopus 로고    scopus 로고
    • Principal component analysis based on nonparametric maximum entropy
    • He, R., Hu, B., Yuan, X., & Zheng,W. (2010). Principal component analysis based on nonparametric maximum entropy. Neurocomputing, 73, 1840-1852.
    • (2010) Neurocomputing , vol.73 , pp. 1840-1852
    • He, R.1    Hu, B.2    Yuan, X.3    Zheng, W.4
  • 18
    • 0011908457 scopus 로고    scopus 로고
    • High breakdown estimation for multiple populations with applications to discriminant analysis
    • He, X., & Fung, W. (2000). High breakdown estimation for multiple populations with applications to discriminant analysis. Multivariate Analysis, 72(2), 151-162.
    • (2000) Multivariate Analysis , vol.72 , Issue.2 , pp. 151-162
    • He, X.1    Fung, W.2
  • 19
    • 0019022335 scopus 로고
    • Multivariant technique for multiclass pattern recognition
    • Hester, C., & Casasent, D. (1980). Multivariant technique for multiclass pattern recognition. Appl. Opt., 19, 1758-1761.
    • (1980) Appl. Opt. , vol.19 , pp. 1758-1761
    • Hester, C.1    Casasent, D.2
  • 23
    • 55949131580 scopus 로고    scopus 로고
    • Enhancing the correntropy MACE filter with random projections
    • Jeong, K., & Principe, J. (2008). Enhancing the correntropy MACE filter with random projections. Neurocomputing, 72, 102-111.
    • (2008) Neurocomputing , vol.72 , pp. 102-111
    • Jeong, K.1    Principe, J.2
  • 26
    • 84975551839 scopus 로고
    • Minimum variance synthetic discriminant functions
    • Kumar, B. (1986). Minimum variance synthetic discriminant functions. J. Opt. Soc. Am., A3(10), 1579-1584.
    • (1986) J. Opt. Soc. Am. , vol.A3 , Issue.10 , pp. 1579-1584
    • Kumar, B.1
  • 27
    • 84975646121 scopus 로고
    • Tutorial survey of composite filter designs for optical correlators
    • Kumar, B.V. (1992). Tutorial survey of composite filter designs for optical correlators. Appl. Opt., 31, 4773-4801.
    • (1992) Appl. Opt. , vol.31 , pp. 4773-4801
    • Kumar, B.V.1
  • 28
    • 33947370895 scopus 로고    scopus 로고
    • Correlation pattern recognition for face recognition
    • Kumar, B. V., Savvides, M., & Xie, C. (2006). Correlation pattern recognition for face recognition. Proc. IEEE, 94(11), 1963-1976.
    • (2006) Proc. IEEE , vol.94 , Issue.11 , pp. 1963-1976
    • Kumar, B.V.1    Savvides, M.2    Xie, C.3
  • 29
    • 48049103479 scopus 로고    scopus 로고
    • Principal component analysis based on l1-norm maximization
    • Kwak, N. (2008). Principal component analysis based on l1-norm maximization. IEEE Trans. on Pattern Analysis and Machine Intelligence, 30(9), 1672-1677.
    • (2008) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.30 , Issue.9 , pp. 1672-1677
    • Kwak, N.1
  • 30
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 31
    • 84864036295 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms
    • B. Schólkopf, J. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
    • Lee, H., Battle, A., Raina, R., & Ng, A. (2006). Efficient sparse coding algorithms. In B. Schólkopf, J. Platt, & T. Hoffman (Eds.), Neural information processing systems, 19 (pp. 801-808). Cambridge, MA: MIT Press.
    • (2006) Neural information processing systems , vol.19 , pp. 801-808
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.4
  • 35
    • 0033096854 scopus 로고    scopus 로고
    • Face recognition using nearest feature linemethod
    • Li, S., & Lu, J. (1999). Face recognition using nearest feature linemethod. IEEE Trans. Neural Network, 10(2), 439-443.
    • (1999) IEEE Trans. Neural Network , vol.10 , Issue.2 , pp. 439-443
    • Li, S.1    Lu, J.2
  • 37
    • 36249029853 scopus 로고    scopus 로고
    • Correntropy: Properties and applications in nongaussian signal processing
    • Liu,W., Pokharel, P., & Principe, J. (2007). Correntropy: Properties and applications in nongaussian signal processing. IEEE Trans. on Signal Processing, 55(11), 5286-5298.
    • (2007) IEEE Trans. on Signal Processing , vol.55 , Issue.11 , pp. 5286-5298
    • Liu, W.1    Pokharel, P.2    Principe, J.3
  • 38
    • 84958494216 scopus 로고
    • Minimum average correlation energy filters
    • Mahalanobis, A., Kumar, B., & Casasent, D. (1987). Minimum average correlation energy filters. Appl. Opt., 26(17), 3633-3640.
    • (1987) Appl. Opt. , vol.26 , Issue.17 , pp. 3633-3640
    • Mahalanobis, A.1    Kumar, B.2    Casasent, D.3
  • 39
    • 39149089704 scopus 로고    scopus 로고
    • Sparse representation for color image restoration
    • Mairal, J., Elad, M., & Sapiro, G. (2008). Sparse representation for color image restoration. IEEE Trans. on Image Processing, 17(1), 53-69.
    • (2008) IEEE Trans. on Image Processing , vol.17 , Issue.1 , pp. 53-69
    • Mairal, J.1    Elad, M.2    Sapiro, G.3
  • 41
    • 0036603236 scopus 로고    scopus 로고
    • Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class
    • Martinez, A. (2002). Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. IEEE Trans. on Pattern Analysis and Machine Intelligence, 24(6), 748-763.
    • (2002) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.24 , Issue.6 , pp. 748-763
    • Martinez, A.1
  • 42
  • 46
    • 0031237427 scopus 로고    scopus 로고
    • Detectability, uniqueness, and reliability of eigen windows for stable verification of partially occluded objects
    • Ohba, K., & Ikeuchi, K. (1997). Detectability, uniqueness, and reliability of eigen windows for stable verification of partially occluded objects. IEEE Trans. on Pattern Analysis and Machine Intelligence, 9, 1043-1047.
    • (1997) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.9 , pp. 1043-1047
    • Ohba, K.1    Ikeuchi, K.2
  • 47
    • 0004001084 scopus 로고
    • View-based and modular eigenspaces for face recognition (Tech. Rep. 245)
    • Cambridge, MA: MIT Media Lab
    • Pentland, A., Moghaddam, B.,&Straner, T. (1994). View-based and modular eigenspaces for face recognition (Tech. Rep. 245). Cambridge, MA: MIT Media Lab.
    • (1994)
    • Pentland, A.1    Moghaddam, B.2    Straner, T.3
  • 48
    • 67349144668 scopus 로고    scopus 로고
    • A low complexity robust detector in impulsive noise
    • Pokharel, P., Liu, W., & Principe, J. (2009). A low complexity robust detector in impulsive noise. Signal Processing, 89(10), 1902-1909.
    • (2009) Signal Processing , vol.89 , Issue.10 , pp. 1902-1909
    • Pokharel, P.1    Liu, W.2    Principe, J.3
  • 50
    • 0000986833 scopus 로고    scopus 로고
    • Information-theoretic learning
    • S. Haykin (Ed.), Hoboken, NJ: Wiley
    • Principe, J. C., Xu, D. X., & Fisher, J. W. (2000). Information-theoretic learning. In S. Haykin (Ed.), Unsupervised adaptive filtering (pp. 265-319). Hoboken, NJ: Wiley.
    • (2000) Unsupervised adaptive filtering , pp. 265-319
    • Principe, J.C.1    Xu, D.X.2    Fisher, J.W.3
  • 52
    • 6244306027 scopus 로고
    • Optimal trade-off filter for pattern recognition and their comparison with Weiner approach
    • Refregier, P., & Figue, J. (1991). Optimal trade-off filter for pattern recognition and their comparison with Weiner approach. Opt. Comput. Process., 1, 3-10.
    • (1991) Opt. Comput. Process. , vol.1 , pp. 3-10
    • Refregier, P.1    Figue, J.2
  • 53
    • 31644433509 scopus 로고    scopus 로고
    • Combining reconstructive and discriminative subspacemethods for robust classification and regression by subsampling
    • Sanja, F., Skocaj, D., & Leonardis, A. (2006). Combining reconstructive and discriminative subspacemethods for robust classification and regression by subsampling. IEEE Trans. on Pattern Analysis and Machine Intelligence, 28(3), 337-350.
    • (2006) IEEE Trans. on Pattern Analysis and Machine Intelligence , vol.28 , Issue.3 , pp. 337-350
    • Sanja, F.1    Skocaj, D.2    Leonardis, A.3
  • 54
    • 33744538091 scopus 로고    scopus 로고
    • Generalized correlation function: Definition, properties, and application to blind equalization
    • Santamaria, I., Pokharel, P. P., & Principe, J. C. (2006). Generalized correlation function: Definition, properties, and application to blind equalization. IEEE Trans. on Signal Processing, 54(6), 2187-2197.
    • (2006) IEEE Trans. on Signal Processing , vol.54 , Issue.6 , pp. 2187-2197
    • Santamaria, I.1    Pokharel, P.P.2    Principe, J.C.3
  • 56
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society B, 58(1), 267-288.
    • (1996) Journal of the Royal Statistical Society B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1
  • 57
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by nonparametric mutual information maximization
    • Torkkola, K. (2003). Feature extraction by nonparametric mutual information maximization. Journal of Machine Learning Research, 3, 1415-1438.
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 60
    • 77952553565 scopus 로고
    • Empirical entropy manipulation for real-world problems
    • M. Mozer, M. I. Jordan, & T. Petsche (Eds.), Cambridge, MA: MIT Press
    • Viola, P., Schraudolph, N., & Sejnowski, T. (1995). Empirical entropy manipulation for real-world problems. In M. Mozer, M. I. Jordan, & T. Petsche (Eds.), Neural information processing systems, 9 (pp. 851-857). Cambridge, MA: MIT Press.
    • (1995) Neural information processing systems , vol.9 , pp. 851-857
    • Viola, P.1    Schraudolph, N.2    Sejnowski, T.3
  • 61
    • 77952717202 scopus 로고    scopus 로고
    • Sparse representation for computer vision and pattern recognition
    • Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T. S., & Yan, S. (2010). Sparse representation for computer vision and pattern recognition. Proceedings of IEEE, 98(6), 1031-1044.
    • (2010) Proceedings of IEEE , vol.98 , Issue.6 , pp. 1031-1044
    • Wright, J.1    Ma, Y.2    Mairal, J.3    Sapiro, G.4    Huang, T.S.5    Yan, S.6
  • 64
    • 70349966130 scopus 로고    scopus 로고
    • Variational graph embedding for globally and locally consistent feature extraction
    • Berlin: Springer
    • Yang, S., Zha, H., Zhou, S.,&Hu, B. (2009). Variational graph embedding for globally and locally consistent feature extraction. In Proceedings of the Europe Conference on Machine Learning (pp. 538-553). Berlin: Springer.
    • (2009) Proceedings of the Europe Conference on Machine Learning , pp. 538-553
    • Yang, S.1    Zha, H.2    Zhou, S.3    Hu, B.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.