메뉴 건너뛰기




Volumn 28, Issue 1, 2011, Pages 1-23

Improving SVM classification on imbalanced time series data sets with ghost points

Author keywords

Imbalanced data sets; Support Vector Machines; Time series

Indexed keywords

CLASSIFICATION (OF INFORMATION); DATA HANDLING; DATA VISUALIZATION; LEARNING SYSTEMS; SUPPORT VECTOR MACHINES; TIME SERIES;

EID: 79959494853     PISSN: 02191377     EISSN: 02193116     Source Type: Journal    
DOI: 10.1007/s10115-010-0310-3     Document Type: Article
Times cited : (52)

References (38)
  • 1
    • 0034954376 scopus 로고    scopus 로고
    • Aligning gene expression time series with time warping algorithms
    • Aach J, Church GM (2001) Aligning gene expression time series with time warping algorithms. Bioinformatics 17: 495-508.
    • (2001) Bioinformatics , vol.17 , pp. 495-508
    • Aach, J.1    Church, G.M.2
  • 2
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman MA, Braverman EA, Rozonoer L (1964) Theoretical foundations of the potential function method in pattern recognition learning. In: Automation and remote control, vol 25, pp 821-837.
    • (1964) Automation and remote control , vol.25 , pp. 821-837
    • Aizerman, M.A.1    Braverman, E.A.2    Rozonoer, L.3
  • 3
    • 22944452794 scopus 로고    scopus 로고
    • Applying support vector machines to imbalanced datasets
    • Akbani R, Kwek S, Japkowicz N (2004) Applying support vector machines to imbalanced datasets. In: Proceedings of ECML'04, pp 39-50.
    • (2004) Proceedings of ECML'04 , pp. 39-50
    • Akbani, R.1    Kwek, S.2    Japkowicz, N.3
  • 4
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Batista GEAPA, Prati RC, Monard MC (2004) A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explor. Newsl. 6(1): 20-29.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 12
    • 70349448250 scopus 로고    scopus 로고
    • Computing and visualizing dynamic time warping alignments in R: the dtw package
    • Giorgino T (2009) Computing and visualizing dynamic time warping alignments in R: the dtw package. Journal of Statistical Software 31(7): 1-24.
    • (2009) Journal of Statistical Software , vol.31 , Issue.7 , pp. 1-24
    • Giorgino, T.1
  • 14
    • 79959528128 scopus 로고    scopus 로고
    • Supervised inductive learning with LotkaVolterra derived models
    • Hovsepian K, Anselmo P, Mazumdar S (2010) Supervised inductive learning with LotkaVolterra derived models. Knowl Inf Syst.
    • (2010) Knowl Inf Syst
    • Hovsepian, K.1    Anselmo, P.2    Mazumdar, S.3
  • 16
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat M, Holte RC, Matwin S (1998) Machine learning for the detection of oil spills in satellite radar images. Machine Learning 30(2-3): 195-215.
    • (1998) Machine Learning , vol.30 , Issue.2-3 , pp. 195-215
    • Kubat, M.1    Holte, R.C.2    Matwin, S.3
  • 19
    • 33745428531 scopus 로고    scopus 로고
    • Feature discovery in non-metric pairwise data
    • Laub J, Müller K-R (2004) Feature discovery in non-metric pairwise data. J Mach Learn Res 5: 801-818.
    • (2004) J Mach Learn Res , vol.5 , pp. 801-818
    • Laub, J.1    Müller, K.-R.2
  • 22
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290: 2323-2326.
    • (2000) Science , vol.290 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 23
    • 0017930815 scopus 로고
    • Dynamic programming algorithm optimization for spoken word recognition
    • Sakoe H, Chiba S (1978) Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans Acoust Speech Signal Process 26: 43-49.
    • (1978) IEEE Trans Acoust Speech Signal Process , vol.26 , pp. 43-49
    • Sakoe, H.1    Chiba, S.2
  • 24
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum JB, de Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290: 2319-2323.
    • (2000) Science , vol.290 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 28
    • 78651478096 scopus 로고    scopus 로고
    • Boosting support vector machines for imbalanced data sets
    • Wang BX, Japkowicz N (2009) Boosting support vector machines for imbalanced data sets. Knowl Inf Syst.
    • (2009) Knowl Inf Syst
    • Wang, B.X.1    Japkowicz, N.2
  • 30
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: a unifying framework
    • Weiss GM (2004) Mining with rarity: a unifying framework. SIGKDD Explor Newsl 6(1): 7-19.
    • (2004) SIGKDD Explor Newsl , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 32
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: the effect of class distribution on tree induction
    • Weiss GM, Provost F (2003) Learning when training data are costly: the effect of class distribution on tree induction. J Artif Intell Res 19: 315-354.
    • (2003) J Artif Intell Res , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 33
    • 0000519688 scopus 로고
    • Comparative evaluation of pattern recognition techniques for detection of microcalcifications in mammography
    • Woods K, Doss C, Bowyer K, Solka J, Priebe C, Kegelmeyer P (1993) Comparative evaluation of pattern recognition techniques for detection of microcalcifications in mammography. Int J Pattern Recognit Artif Intell 7: 1417-1436.
    • (1993) Int J Pattern Recognit Artif Intell , vol.7 , pp. 1417-1436
    • Woods, K.1    Doss, C.2    Bowyer, K.3    Solka, J.4    Priebe, C.5    Kegelmeyer, P.6
  • 38
    • 44649091206 scopus 로고    scopus 로고
    • Instance weighting versus threshold adjusting for cost-sensitive classification
    • Zhao H (2008) Instance weighting versus threshold adjusting for cost-sensitive classification. Knowl Inf Syst 15(3): 321-334.
    • (2008) Knowl Inf Syst , vol.15 , Issue.3 , pp. 321-334
    • Zhao, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.