메뉴 건너뛰기




Volumn , Issue , 2010, Pages

Frequency independent automatic input variable selection for Neural Networks for forecasting

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; AUTOMATION; FORECASTING; ITERATIVE METHODS; STOCHASTIC SYSTEMS;

EID: 79959452738     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IJCNN.2010.5596637     Document Type: Conference Paper
Times cited : (15)

References (41)
  • 1
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • Mar
    • G. Q. Zhang, B. E. Patuwo, and M. Y. Hu, "Forecasting with artificial neural networks: The state of the art," International Journal of Forecasting, vol. 14, no. 1, pp. 35-62, Mar, 1998.
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.Q.1    Patuwo, B.E.2    Hu, M.Y.3
  • 2
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White, "Multilayer feedforward networks are universal approximators" Neural Networks, vol. 2, no. 5, pp. 359-366, 1989.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 3
    • 0034288942 scopus 로고    scopus 로고
    • The M3-Competition: Results, conclusions and implications
    • Oct-Dec
    • S. Makridakis, and M. Hibon, "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, vol. 16, no. 4, pp. 451-476, Oct-Dec, 2000.
    • (2000) International Journal of Forecasting , vol.16 , Issue.4 , pp. 451-476
    • Makridakis, S.1    Hibon, M.2
  • 4
    • 33745941548 scopus 로고    scopus 로고
    • Findings from evidence-based forecasting: Methods for reducing forecast error
    • J. S. Armstrong, "Findings from evidence-based forecasting: Methods for reducing forecast error," International Journal of Forecasting, vol. 22, no. 3, pp. 583-598, 2006.
    • (2006) International Journal of Forecasting , vol.22 , Issue.3 , pp. 583-598
    • Armstrong, J.S.1
  • 5
    • 0030576491 scopus 로고    scopus 로고
    • Non-traditional methods of forecasting
    • Aug
    • D. W. Bunn, "Non-traditional methods of forecasting," European Journal of Operational Research, vol. 92, no. 3, pp. 528-536, Aug, 1996.
    • (1996) European Journal of Operational Research , vol.92 , Issue.3 , pp. 528-536
    • Bunn, D.W.1
  • 7
    • 0033105287 scopus 로고    scopus 로고
    • Model selection in neural networks
    • Mar
    • U. Anders, and O. Korn, "Model selection in neural networks" Neural Networks, vol. 12, no. 2, pp. 309-323, Mar, 1999.
    • (1999) Neural Networks , vol.12 , Issue.2 , pp. 309-323
    • Anders, U.1    Korn, O.2
  • 8
    • 10644282144 scopus 로고    scopus 로고
    • The accuracy of a procedural approach to specifying feedforward neural networks for forecasting
    • Aug
    • K. P. Liao, and R. Fildes, "The accuracy of a procedural approach to specifying feedforward neural networks for forecasting," Computers & Operations Research, vol. 32, no. 8, pp. 2151-2169, Aug, 2005.
    • (2005) Computers & Operations Research , vol.32 , Issue.8 , pp. 2151-2169
    • Liao, K.P.1    Fildes, R.2
  • 9
    • 0035314205 scopus 로고    scopus 로고
    • A simulation study of artificial neural networks for nonlinear time-series forecasting
    • Apr
    • G. P. Zhang, B. E. Patuwo, and M. Y. Hu, "A simulation study of artificial neural networks for nonlinear time-series forecasting," Computers & Operations Research, vol. 28, no. 4, pp. 381-396, Apr, 2001.
    • (2001) Computers & Operations Research , vol.28 , Issue.4 , pp. 381-396
    • Zhang, G.P.1    Patuwo, B.E.2    Hu, M.Y.3
  • 10
    • 0035480297 scopus 로고    scopus 로고
    • An investigation of neural networks for linear time-series forecasting
    • Oct
    • G. P. Zhang, "An investigation of neural networks for linear time-series forecasting," Computers & Operations Research, vol. 28, no. 12, pp. 1183-1202, Oct, 2001.
    • (2001) Computers & Operations Research , vol.28 , Issue.12 , pp. 1183-1202
    • Zhang, G.P.1
  • 11
    • 0000902316 scopus 로고    scopus 로고
    • Time series forecasting using neural networks: Should the data be deseasonalized first?
    • Sep
    • M. Nelson, T. Hill, W. Remus et al., "Time series forecasting using neural networks: Should the data be deseasonalized first?," Journal of Forecasting, vol. 18, no. 5, pp. 359-367, Sep, 1999.
    • (1999) Journal of Forecasting , vol.18 , Issue.5 , pp. 359-367
    • Nelson, M.1    Hill, T.2    Remus, W.3
  • 12
    • 79959454484 scopus 로고    scopus 로고
    • Forecasting seasonal time series with multilayer perceptrons - An empirical evaluation of input vector specifications for deterministic seasonality
    • S. F. Crone, and N. Kourentzes, "Forecasting seasonal time series with multilayer perceptrons - an empirical evaluation of input vector specifications for deterministic seasonality," WORLDCOMP 2009, DMIN 2009, Las Vegas, pp. 232-238, 2009.
    • (2009) WORLDCOMP 2009, DMIN 2009, Las Vegas , pp. 232-238
    • Crone, S.F.1    Kourentzes, N.2
  • 13
    • 36348935677 scopus 로고    scopus 로고
    • Quarterly time-series forecasting with neural networks
    • Nov
    • G. P. Zhang, and D. M. Kline, "Quarterly time-series forecasting with neural networks," Ieee Transactions on Neural Networks vol. 18, no. 6, pp. 1800-1814, Nov, 2007.
    • (2007) Ieee Transactions on Neural Networks , vol.18 , Issue.6 , pp. 1800-1814
    • Zhang, G.P.1    Kline, D.M.2
  • 14
    • 33751318064 scopus 로고    scopus 로고
    • Neural networks and seasonality: Some technical considerations
    • May
    • B. Curry, "Neural networks and seasonality: Some technical considerations," European Journal of Operational Research, vol. 179, no. 1, pp. 267-274, May, 2007.
    • (2007) European Journal of Operational Research , vol.179 , Issue.1 , pp. 267-274
    • Curry, B.1
  • 15
    • 0142208589 scopus 로고    scopus 로고
    • The Forecast Pro methodology
    • Oct-Dec
    • R. L. Goodrich, "The Forecast Pro methodology," International Journal of Forecasting, vol. 16, no. 4, pp. 533-535, Oct-Dec, 2000.
    • (2000) International Journal of Forecasting , vol.16 , Issue.4 , pp. 533-535
    • Goodrich, R.L.1
  • 16
    • 48749112805 scopus 로고    scopus 로고
    • Automatic time series forecasting: The forecast package for R
    • Jul
    • R. J. Hyndman, and Y. Khandakar, "Automatic time series forecasting: The forecast package for R," Journal of Statistical Software, vol. 27, no. 3, pp. 1-22, Jul, 2008.
    • (2008) Journal of Statistical Software , vol.27 , Issue.3 , pp. 1-22
    • Hyndman, R.J.1    Khandakar, Y.2
  • 20
    • 22444452861 scopus 로고    scopus 로고
    • Extracting information from mega-panels and high-frequency data
    • Nov
    • C. W. J. Granger, "Extracting information from mega-panels and high-frequency data," Statistica Neerlandica, vol. 52, no. 3, pp. 258-272, Nov, 1998.
    • (1998) Statistica Neerlandica , vol.52 , Issue.3 , pp. 258-272
    • Granger, C.W.J.1
  • 21
    • 31744444183 scopus 로고    scopus 로고
    • A comparison of univariate methods for forecasting electricity demand up to a day ahead
    • Jan-Mar
    • J. W. Taylor, L. M. de Menezes, and P. E. McSharry, "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, vol. 22, no. 1, pp. 1-16, Jan-Mar, 2006.
    • (2006) International Journal of Forecasting , vol.22 , Issue.1 , pp. 1-16
    • Taylor, J.W.1    De Menezes, L.M.2    McSharry, P.E.3
  • 24
    • 33749523557 scopus 로고    scopus 로고
    • Exponential smoothing: The state of the art - Part II
    • E. S. Gardner, "Exponential smoothing: The state of the art - Part II," International Journal of Forecasting, vol. 22, no. 4, pp. 637-666, 2006.
    • (2006) International Journal of Forecasting , vol.22 , Issue.4 , pp. 637-666
    • Gardner, E.S.1
  • 25
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • K. Hornik, "Approximation capabilities of multilayer feedforward networks," Neural Networks, vol. 4, no. 2, pp. 251-257, 1991.
    • (1991) Neural Networks , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 26
    • 0001181242 scopus 로고    scopus 로고
    • Improving the pricing of options: A neural network approach
    • Sep-Nov
    • U. Anders, O. Korn, and C. Schmitt, "Improving the pricing of options: A neural network approach," Journal of Forecasting, vol. 17, no. 5-6, pp. 369-388, Sep-Nov, 1998.
    • (1998) Journal of Forecasting , vol.17 , Issue.5-6 , pp. 369-388
    • Anders, U.1    Korn, O.2    Schmitt, C.3
  • 27
    • 4344591889 scopus 로고    scopus 로고
    • Neural network forecasting for seasonal and trend time series
    • Jan
    • G. P. Zhang, and M. Qi, "Neural network forecasting for seasonal and trend time series," European Journal of Operational Research, vol. 160, no. 2, pp. 501-514, Jan, 2005.
    • (2005) European Journal of Operational Research , vol.160 , Issue.2 , pp. 501-514
    • Zhang, G.P.1    Qi, M.2
  • 28
    • 44349114564 scopus 로고    scopus 로고
    • Trend time-series modeling and forecasting with neural networks
    • May
    • M. Qi, and G. P. Zhang, "Trend time-series modeling and forecasting with neural networks," Ieee Transactions on Neural Networks, vol. 19, no. 5, pp. 808-816, May, 2008.
    • (2008) Ieee Transactions on Neural Networks , vol.19 , Issue.5 , pp. 808-816
    • Qi, M.1    Zhang, G.P.2
  • 29
    • 4344586989 scopus 로고    scopus 로고
    • Linear versus neural network forecasts for European industrial production series
    • Jul-Sep
    • S. Heravi, D. R. Osborn, and C. R. Birchenhall, "Linear versus neural network forecasts for European industrial production series," International Journal of Forecasting, vol. 20, no. 3, pp. 435-446, Jul-Sep, 2004.
    • (2004) International Journal of Forecasting , vol.20 , Issue.3 , pp. 435-446
    • Heravi, S.1    Osborn, D.R.2    Birchenhall, C.R.3
  • 31
    • 84953063700 scopus 로고
    • Are seasoanl patterns constant over time - A test for seasonal stability
    • Jul
    • F. Canova, and B. E. Hansen, "Are seasoanl patterns constant over time - a test for seasonal stability," Journal of Business & Economic Statistics, vol. 13, no. 3, pp. 237-252, Jul, 1995.
    • (1995) Journal of Business & Economic Statistics , vol.13 , Issue.3 , pp. 237-252
    • Canova, F.1    Hansen, B.E.2
  • 35
    • 0034288853 scopus 로고    scopus 로고
    • Out-of-sample tests of forecasting accuracy: An analysis and review
    • L. Tashman, "Out-of-sample tests of forecasting accuracy: an analysis and review," International Journal of Forecasting, vol. 16, pp. 437-450, 2000.
    • (2000) International Journal of Forecasting , vol.16 , pp. 437-450
    • Tashman, L.1
  • 36
    • 29644438050 scopus 로고    scopus 로고
    • Statistical Comparisons of Classifiers over Multiple Data Sets
    • D. Janez, and ar, "Statistical Comparisons of Classifiers over Multiple Data Sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Janez, D.1
  • 38
    • 0031521391 scopus 로고    scopus 로고
    • Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models
    • Dec
    • N. R. Swanson, and H. White, "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, vol. 13, no. 4, pp. 439-461, Dec, 1997.
    • (1997) International Journal of Forecasting , vol.13 , Issue.4 , pp. 439-461
    • Swanson, N.R.1    White, H.2
  • 39
    • 0034288854 scopus 로고    scopus 로고
    • Automatic neural network modeling for univariate time series
    • Oct-Dec
    • S. D. Balkin, and J. K. Ord, "Automatic neural network modeling for univariate time series," International Journal of Forecasting, vol. 16, no. 4, pp. 509-515, Oct-Dec, 2000.
    • (2000) International Journal of Forecasting , vol.16 , Issue.4 , pp. 509-515
    • Balkin, S.D.1    Ord, J.K.2
  • 40
    • 0000032342 scopus 로고    scopus 로고
    • How effective are neural networks at forecasting and prediction? A review and evaluation
    • Sep-Nov
    • M. Adya, and F. Collopy, "How effective are neural networks at forecasting and prediction? A review and evaluation," Journal of Forecasting, vol. 17, no. 5-6, pp. 481-495, Sep-Nov, 1998.
    • (1998) Journal of Forecasting , vol.17 , Issue.5-6 , pp. 481-495
    • Adya, M.1    Collopy, F.2
  • 41
    • 33749523557 scopus 로고    scopus 로고
    • Exponential smoothing: The state of the art - Part II
    • E. J. Gardner, "Exponential smoothing: The state of the art - Part II, " International Journal of Forecasting, vol. 22, no. 4, pp. 637-666, 2006.
    • (2006) International Journal of Forecasting , vol.22 , Issue.4 , pp. 637-666
    • Gardner, E.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.