메뉴 건너뛰기




Volumn 80, Issue , 2011, Pages 161-187

Assembly of bacterial inner membrane proteins

Author keywords

oligomer; quality control; SecYEG; TM TM interactions; YidC

Indexed keywords

BACTERIAL ENZYME; BACTERIAL PROTEIN; CARRIER PROTEIN; CYTOCHROME C OXIDASE; MALTOSE; MEMBRANE PROTEIN; MULTIPROTEIN COMPLEX; OLIGOMER; PROTEIN SUBUNIT; PROTON TRANSPORTING ADENOSINE TRIPHOSPHATE SYNTHASE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE (UBIQUINONE); UNCLASSIFIED DRUG; YIDC INSERTASE;

EID: 79959435716     PISSN: 00664154     EISSN: 00664154     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-060409-092524     Document Type: Article
Times cited : (133)

References (189)
  • 1
    • 0031954925 scopus 로고    scopus 로고
    • Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms
    • Wallin E, von Heijne G. 1998. Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci. 7:1029-038. (Pubitemid 28216544)
    • (1998) Protein Science , vol.7 , Issue.4 , pp. 1029-1038
    • Wallin, E.1    Von Heijne, G.2
  • 2
    • 43249083239 scopus 로고    scopus 로고
    • Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel
    • DOI 10.1038/nsmb.1402, PII NSMB1402
    • Bornemann T, Jockel J, Rodnina MV, WintermeyerW. 2008. Signal sequence-independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel. Nat. Struct. Mol. Biol. 15:494-499. (Pubitemid 351653581)
    • (2008) Nature Structural and Molecular Biology , vol.15 , Issue.5 , pp. 494-499
    • Bornemann, T.1    Jockel, J.2    Rodnina, M.V.3    Wintermeyer, W.4
  • 3
    • 60849096653 scopus 로고    scopus 로고
    • A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel
    • Berndt U, Oellerer S, Zhang Y, Johnson AE, Rospert S. 2009. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc. Natl. Acad. Sci. USA 106:1398-403.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 1398-1403
    • Berndt, U.1    Oellerer, S.2    Zhang, Y.3    Johnson, A.E.4    Rospert, S.5
  • 4
    • 44249116231 scopus 로고    scopus 로고
    • An amphiphilic region in the cytoplasmic domain of KdpD is recognized by the signal recognition particle and targeted to the Escherichia coli membrane
    • DOI 10.1111/j.1365-2958.2008.06246.x
    • Maier KS, Hubich S, Liebhart H, Krauss S, Kuhn A, Facey SJ. 2008. An amphiphilic region in the cytoplasmic domain of KdpD is recognized by the signal recognition particle and targeted to the Escherichia coli membrane. Mol. Microbiol. 68:1471-484. (Pubitemid 351725258)
    • (2008) Molecular Microbiology , vol.68 , Issue.6 , pp. 1471-1484
    • Maier, K.S.1    Hubich, S.2    Liebhart, H.3    Krauss, S.4    Kuhn, A.5    Facey, S.J.6
  • 5
    • 0034681490 scopus 로고    scopus 로고
    • Crystal structure of the ribonucleoprotein core of the signal recognition particle
    • DOI 10.1126/science.287.5456.1232
    • Batey RT, Rambo RP, Lucast L, Rha B, Doudna JA. 2000. Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287:1232-239. (Pubitemid 30112139)
    • (2000) Science , vol.287 , Issue.5456 , pp. 1232-1239
    • Batey, R.T.1    Rambo, R.P.2    Lucast, L.3    Rha, B.4    Doudna, J.A.5
  • 7
    • 0346373753 scopus 로고    scopus 로고
    • Heterodimeric GTPase core of the SRP targeting complex
    • DOI 10.1126/science.1090827
    • Focia PJ, Shepotinovskaya IV, Seidler JA, Freymann DM. 2004. HeterodimericGTPase core of the SRP targeting complex. Science 303:373-377. (Pubitemid 38095777)
    • (2004) Science , vol.303 , Issue.5656 , pp. 373-377
    • Focia, P.J.1    Shepotinovskaya, I.V.2    Seidler, J.A.3    Freymann, D.M.4
  • 8
    • 0347584006 scopus 로고    scopus 로고
    • Substrate twinning activates the signal recognition particle and its receptor
    • DOI 10.1038/nature02250
    • Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, Stroud RM. 2004. Substrate twinning activates the signal recognition particle and its receptor. Nature 427:215-221. (Pubitemid 38112032)
    • (2004) Nature , vol.427 , Issue.6971 , pp. 215-221
    • Egea, P.F.1    Shan, S.-O.2    Napetschnig, J.3    Savage, D.F.4    Walter, P.5    Stroud, R.M.6
  • 9
    • 20044388542 scopus 로고    scopus 로고
    • FtsY, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon
    • DOI 10.1038/sj.embor.7400385
    • Angelini S, Deitermann S, Koch HG. 2005. Fts Y, the bacterial signal-recognition particle receptor, interacts functionally and physically with the SecYEG translocon. EMBO Rep. 5:476-481. (Pubitemid 40767082)
    • (2005) EMBO Reports , vol.6 , Issue.5 , pp. 476-481
    • Angelini, S.1    Deitermann, S.2    Koch, H.-G.3
  • 10
    • 50649104037 scopus 로고    scopus 로고
    • Protein translocation across the bacterial cytoplasmic membrane
    • Driessen AJ, Nouwen N. 2008. Protein translocation across the bacterial cytoplasmic membrane. Annu. Rev. Biochem. 77:643-667.
    • (2008) Annu. Rev. Biochem. , vol.77 , pp. 643-667
    • Driessen, A.J.1    Nouwen, N.2
  • 11
    • 35348908966 scopus 로고    scopus 로고
    • Bacterial protein secretion through the translocase nanomachine
    • DOI 10.1038/nrmicro1771, PII NRMICRO1771
    • Papanikou E, Karamanou S, Economou A. 2007. Bacterial protein secretion through the translocase nanomachine. Nat. Rev. Microbiol. 5:839-851. (Pubitemid 47578385)
    • (2007) Nature Reviews Microbiology , vol.5 , Issue.11 , pp. 839-851
    • Papanikou, E.1    Karamanou, S.2    Economou, A.3
  • 13
    • 0028009577 scopus 로고
    • SecD and SecF facilitate protein export in Escherichia coli
    • Pogliano JA, Beckwith J. 1994. SecD and SecF facilitate protein export in Escherichia coli. EMBO J. 13:554-561. (Pubitemid 24050669)
    • (1994) EMBO Journal , vol.13 , Issue.3 , pp. 554-561
    • Pogliano, J.A.1    Beckwith, J.2
  • 15
    • 0028064967 scopus 로고
    • SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion
    • DOI 10.1016/S0092-8674(94)90582-7
    • Economou A, Wickner W. 1994. SecA promotes preprotein translocation by undergoing ATP-driven cycles of membrane insertion and deinsertion. Cell 78:835-843. (Pubitemid 24294458)
    • (1994) Cell , vol.78 , Issue.5 , pp. 835-843
    • Economou, A.1    Wickner, W.2
  • 16
    • 0031435335 scopus 로고    scopus 로고
    • The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events
    • DOI 10.1093/emboj/16.24.7297
    • van der Wolk JP, deWit JG, Driessen AJ. 1997. The catalytic cycle of the Escherichia coli SecA ATPase comprises two distinct preprotein translocation events. EMBO J. 16:7297-304. (Pubitemid 28010490)
    • (1997) EMBO Journal , vol.16 , Issue.24 , pp. 7297-7304
    • Van Der Wolk, J.P.W.1    De Wit, J.G.2    Driessen, A.J.M.3
  • 18
    • 18544380083 scopus 로고    scopus 로고
    • Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY
    • DOI 10.1083/jcb.200412019
    • Cannon KS, Or E, ClemonsWMJr, Shibata Y, Rapoport TA. 2005. Disulfide bridge formation between SecY and a translocating polypeptide localizes the translocation pore to the center of SecY. J. Cell Biol. 169:219-225. (Pubitemid 40656559)
    • (2005) Journal of Cell Biology , vol.169 , Issue.2 , pp. 219-225
    • Cannon, K.S.1    Or, E.2    Clemons Jr., W.M.3    Shibata, Y.4    Rapoport, T.A.5
  • 19
    • 57749186222 scopus 로고    scopus 로고
    • Synthetic peptides identify a second periplasmic site for the plug of the SecYEG protein translocation complex
    • Robson A, Carr B, Sessions RB, Collinson I. 2009. Synthetic peptides identify a second periplasmic site for the plug of the SecYEG protein translocation complex. FEBS Lett. 583:207-212.
    • (2009) FEBS Lett. , vol.583 , pp. 207-212
    • Robson, A.1    Carr, B.2    Sessions, R.B.3    Collinson, I.4
  • 20
    • 0033032483 scopus 로고    scopus 로고
    • Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking
    • Harris CR, Silhavy TJ. 1999. Mapping an interface of SecY (PrlA) and SecE (PrlG) by using synthetic phenotypes and in vivo cross-linking. J. Bacteriol. 181:3438-444. (Pubitemid 29259294)
    • (1999) Journal of Bacteriology , vol.181 , Issue.11 , pp. 3438-3444
    • Harris, C.R.1    Silhavy, T.J.2
  • 22
    • 0027457077 scopus 로고
    • A signal sequence is not required for protein export in prlA mutants of Escherichia coli
    • Derman AI, Puziss JW, Bassford PJ Jr, Beckwith J. 1993. A signal sequence is not required for protein export in prlA mutants of Escherichia coli. EMBO J. 12:879-888. (Pubitemid 23095836)
    • (1993) EMBO Journal , vol.12 , Issue.3 , pp. 879-888
    • Derman, A.I.1    Puziss, J.W.2    Bassford Jr., P.J.3    Beckwith, J.4
  • 23
    • 0029831166 scopus 로고    scopus 로고
    • Targeting of signal sequenceless proteins for export in Escherichia coli with altered protein translocase
    • Prinz WA, Spiess C, Ehrmann M, Schierle C, Beckwith J. 1996. Targeting of signal sequenceless proteins for export in Escherichia coli with altered protein translocase. EMBO J. 15:5209-217. (Pubitemid 26336204)
    • (1996) EMBO Journal , vol.15 , Issue.19 , pp. 5209-5217
    • Prinz, W.A.1    Spiess, C.2    Ehrmann, M.3    Schierle, C.4    Beckwith, J.5
  • 24
    • 27144525002 scopus 로고    scopus 로고
    • Investigating the SecY plug movement at the SecYEG translocation channel
    • DOI 10.1038/sj.emboj.7600804, PII 7600804
    • Tam PC, Maillard AP, Chan KK, Duong F. 2005. Investigating the SecY plugmovement at the SecYEG translocation channel. EMBO J. 24:3380-388. (Pubitemid 41486776)
    • (2005) EMBO Journal , vol.24 , Issue.19 , pp. 3380-3388
    • Tam, P.C.K.1    Maillard, A.P.2    Chan, K.K.Y.3    Duong, F.4
  • 25
    • 24944465005 scopus 로고    scopus 로고
    • Modeling the effects of prl mutations on the Escherichia coli SecY complex
    • DOI 10.1128/JB.187.18.6454-6465.2005
    • Smith MA, Clemons WM Jr, DeMars CJ, Flower AM. 2005. Modeling the effects of prl mutations on the Escherichia coli SecY complex. J. Bacteriol. 187:6454-465. (Pubitemid 41318405)
    • (2005) Journal of Bacteriology , vol.187 , Issue.18 , pp. 6454-6465
    • Smith, M.A.1    Clemons Jr., W.M.2    DeMars, C.J.3    Flower, A.M.4
  • 26
    • 0032544614 scopus 로고    scopus 로고
    • Signal sequence recognition in posttranslational protein transport across the yeast ER membrane
    • DOI 10.1016/S0092-8674(00)81738-9
    • Plath K, Mothes W, Wilkinson BM, Stirling CJ, Rapoport TA. 1998. Signal sequence recognition in posttranslational protein transport across the yeast ER membrane. Cell 94:795-807. (Pubitemid 28436011)
    • (1998) Cell , vol.94 , Issue.6 , pp. 795-807
    • Plath, K.1    Mothes, W.2    Wilkinson, B.M.3    Stirling, C.J.4    Rapoport, T.A.5
  • 28
    • 54049111011 scopus 로고    scopus 로고
    • Structure of a complex of the ATPase SecA and the proteintranslocation channel
    • Zimmer J, Nam Y, Rapoport TA. 2008. Structure of a complex of the ATPase SecA and the proteintranslocation channel. Nature 455:936-943.
    • (2008) Nature , vol.455 , pp. 936-943
    • Zimmer, J.1    Nam, Y.2    Rapoport, T.A.3
  • 30
    • 73949146135 scopus 로고    scopus 로고
    • Mapping polypeptide interactions of the SecA ATPase during translocation
    • Bauer BW, Rapoport TA. 2009. Mapping polypeptide interactions of the SecA ATPase during translocation. Proc. Natl. Acad. Sci. USA 106:20800-5.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 20800-5
    • Bauer, B.W.1    Rapoport, T.A.2
  • 33
    • 0022398528 scopus 로고
    • M13 procoat inserts into liposomes in the absence of other membrane proteins
    • Geller BL, Wickner W. 1985. M13 procoat inserts into liposomes in the absence of other membrane proteins. J. Biol. Chem. 260:13281-285. (Pubitemid 16209805)
    • (1985) Journal of Biological Chemistry , vol.260 , Issue.24 , pp. 13281-13285
    • Geller, B.L.1    Wickner, W.2
  • 34
    • 0037040894 scopus 로고    scopus 로고
    • Direct interaction of YidC with the Sec-independent Pf3 coat protein during its membrane protein insertion
    • DOI 10.1074/jbc.M110644200
    • Chen M, Samuelson JC, Jiang F, Muller M, Kuhn A, Dalbey RE. 2002. Direct interaction of YidC with the Sec-independent Pf3 coat protein during its membrane protein insertion. J. Biol. Chem. 277:7670-675. (Pubitemid 34968212)
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.10 , pp. 7670-7675
    • Chen, M.1    Samuelson, J.C.2    Jiang, F.3    Muller, M.4    Kuhn, A.5    Dalbey, R.E.6
  • 35
    • 1542350817 scopus 로고    scopus 로고
    • Escherichia coli YidC is a membrane insertase for Sec-independent proteins
    • Serek J, Bauer-Manz G, Struhalla G, van den Berg L, Kiefer D, et al. 2004. Escherichia coli YidC is a membrane insertase for Sec-independent proteins. EMBO J. 23:294-230.
    • (2004) EMBO J. , vol.23 , pp. 294-230
    • Serek, J.1    Bauer-Manz, G.2    Struhalla, G.3    Van Den Berg, L.4    Kiefer, D.5
  • 36
    • 2142705713 scopus 로고    scopus 로고
    • 0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis
    • DOI 10.1083/jcb.200402100
    • van der Laan M, Bechtluft P, Kol S, Nouwen N, Driessen AJ. 2004. F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis. J. Cell Biol. 165:213-222. (Pubitemid 38544524)
    • (2004) Journal of Cell Biology , vol.165 , Issue.2 , pp. 213-222
    • Van Der Laan, M.1    Bechduft, P.2    Kol, S.3    Nouwen, N.4    Driessen, A.J.M.5
  • 37
    • 67650489237 scopus 로고    scopus 로고
    • Substrate-induced conformational change of the Escherichia coli membrane insertase YidC
    • Winterfeld S, Imhof N, Roos T, Bar G, Kuhn A, Gerken U. 2009. Substrate-induced conformational change of the Escherichia coli membrane insertase YidC. Biochemistry 48:6684-691.
    • (2009) Biochemistry , vol.48 , pp. 6684-6691
    • Winterfeld, S.1    Imhof, N.2    Roos, T.3    Bar, G.4    Kuhn, A.5    Gerken, U.6
  • 38
    • 0041315927 scopus 로고    scopus 로고
    • 0ATP synthase and SecE of the SecYEG translocase
    • DOI 10.1021/bi034309h
    • Yi L, Jiang F, Chen M, Cain B, Bolhuis A, Dalbey RE. 2003. YidC is strictly required for membrane insertion of subunits a and c of the F1F0 ATP synthase and SecE of the SecYEG translocase. Biochemistry 42:10537-544. (Pubitemid 37071454)
    • (2003) Biochemistry , vol.42 , Issue.35 , pp. 10537-10544
    • Yi, L.1    Jiang, F.2    Chen, M.3    Cain, B.4    Bolhuis, A.5    Dalbey, R.E.6
  • 39
    • 33845761509 scopus 로고    scopus 로고
    • The Mechanosensitive Channel Protein MscL Is Targeted by the SRP to The Novel YidC Membrane Insertion Pathway of Escherichia coli
    • DOI 10.1016/j.jmb.2006.10.083, PII S0022283606015087
    • Facey SJ, Neugebauer SA, Krauss S, Kuhn A. 2007. The mechanosensitive channel protein MscL is targeted by the SRP to the novel YidC membrane insertion pathway of Escherichia coli. J. Mol. Biol. 365:995-1004. (Pubitemid 46014190)
    • (2007) Journal of Molecular Biology , vol.365 , Issue.4 , pp. 995-1004
    • Facey, S.J.1    Neugebauer, S.A.2    Krauss, S.3    Kuhn, A.4
  • 40
  • 41
    • 0028245283 scopus 로고
    • OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis
    • DOI 10.1006/jmbi.1994.1363
    • Bonnefoy N, Chalvet F, Hamel P, Slonimski PP, Dujardin G. 1994. OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J. Mol. Biol. 239:201-212. (Pubitemid 24210406)
    • (1994) Journal of Molecular Biology , vol.239 , Issue.2 , pp. 201-212
    • Bonnefoy, N.1    Chalvet, F.2    Hamel, P.3    Slonimski, P.P.4    Dujardin, G.5
  • 42
    • 0028073024 scopus 로고
    • PET1402, a nuclear gene required for proteolytic processing of cytochrome oxidase subunit 2 in yeast
    • DOI 10.1007/BF00290106
    • Bauer M, Behrens M, Esser K, Michaelis G, Pratje E. 1994. PET1402, a nuclear gene required for proteolytic processing of cytochrome oxidase subunit 2 in yeast. Mol. Gen. Genet. 245:272-278. (Pubitemid 24352412)
    • (1994) Molecular and General Genetics , vol.245 , Issue.3 , pp. 272-278
    • Bauer, M.1    Behrens, M.2    Esser, K.3    Michaelis, G.4    Pratje, E.5
  • 43
    • 0029925334 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae OXA1 gene is required for the correct assembly of cytochrome c oxidase and oligomycin-sensitive ATP synthase
    • DOI 10.1016/0014-5793(96)00165-2
    • Altamura N, Capitanio N, Bonnefoy N, Papa S, Dujardin G. 1996. The Saccharomyces cerevisiae OXA1 gene is required for the correct assembly of cytochrome c oxidase and oligomycin-sensitive ATP synthase. FEBS Lett. 382:111-115. (Pubitemid 26092240)
    • (1996) FEBS Letters , vol.382 , Issue.1-2 , pp. 111-115
    • Altamura, N.1    Capitanio, N.2    Bonnefoy, N.3    Papa, S.4    Dujardin, G.5
  • 44
    • 0030952628 scopus 로고    scopus 로고
    • Membrane translocation of mitochondrially coded Cox2p: Distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p
    • He S, Fox TD. 1997. Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export ofNand C termini and dependence on the conserved proteinOxa1p. Mol. Biol. Cell 8:1449-460. (Pubitemid 27385569)
    • (1997) Molecular Biology of the Cell , vol.8 , Issue.8 , pp. 1449-1460
    • He, S.1    Fox, T.D.2
  • 45
    • 0030656514 scopus 로고    scopus 로고
    • Oxa1p mediates the export of the N- and C-termini of pCoxII from the mitochondrial matrix to the intermembrane space
    • DOI 10.1016/S0014-5793(97)01412-9, PII S0014579397014129
    • Hell K, Herrmann J, Pratje E, Neupert W, Stuart RA. 1997. Oxa1p mediates the export of the N- and C-termini of pCoxII from the mitochondrial matrix to the intermembrane space. FEBS Lett. 418:367-370. (Pubitemid 27515959)
    • (1997) FEBS Letters , vol.418 , Issue.3 , pp. 367-370
    • Hell, K.1    Herrmann, J.2    Pratje, E.3    Neupert, W.4    Stuart, R.A.5
  • 46
    • 1642423514 scopus 로고    scopus 로고
    • The Oxa2 Protein of Neurospora crassa Plays, a Critical Role in the Biogenesis of Cytochrome Oxidase and Defines a Ubiquitous Subbranch of the Oxa1/YidC/Alb3 Protein Family
    • DOI 10.1091/mbc.E03-11-0789
    • Funes S, Nargang FE, Neupert W, Herrmann JM. 2004. The Oxa2 protein of Neurospora crassa plays a critical role in the biogenesis of cytochrome oxidase and defines a ubiquitous subbranch of the Oxa1/YidC/Alb3 protein family. Mol. Biol. Cell 15:1853-861. (Pubitemid 38401833)
    • (2004) Molecular Biology of the Cell , vol.15 , Issue.4 , pp. 1853-1861
    • Funes, S.1    Nargang, F.E.2    Neupert, W.3    Herrmann, J.M.4
  • 47
    • 41949094573 scopus 로고    scopus 로고
    • Crystal structure of themajor periplasmic domain of the bacterial membrane protein assembly facilitator YidC
    • Oliver DC, Paetzel M. 2008. Crystal structure of themajor periplasmic domain of the bacterial membrane protein assembly facilitator YidC. J. Biol. Chem. 283:5208-216.
    • (2008) J. Biol. Chem. , vol.283 , pp. 5208-5216
    • Oliver, D.C.1    Paetzel, M.2
  • 48
    • 44049107026 scopus 로고    scopus 로고
    • The crystal structure of the periplasmic domain of the Escherichia coli membrane protein insertase YidC contains a substrate binding cleft
    • Ravaud S, Stjepanovic G, Wild K, Sinning I. 2008. The crystal structure of the periplasmic domain of the Escherichia coli membrane protein insertase YidC contains a substrate binding cleft. J. Biol. Chem. 283:9350-358.
    • (2008) J. Biol. Chem. , vol.283 , pp. 9350-9358
    • Ravaud, S.1    Stjepanovic, G.2    Wild, K.3    Sinning, I.4
  • 49
    • 1542676909 scopus 로고    scopus 로고
    • Defining the regions of Escherichia coli YidC that contribute to activity
    • Jiang F, Chen M, Yi L, de Gier JW, Kuhn A, Dalbey RE. 2003. Defining the regions of Escherichia coli YidC that contribute to activity. J. Biol. Chem. 278:48965-972.
    • (2003) J. Biol. Chem. , vol.278 , pp. 48965-48972
    • Jiang, F.1    Chen, M.2    Yi, L.3    De Gier, J.W.4    Kuhn, A.5    Dalbey, R.E.6
  • 50
    • 0036015653 scopus 로고    scopus 로고
    • SecDFyajC forms a heterotetrameric complex with YidC
    • DOI 10.1046/j.1365-2958.2002.02972.x
    • Nouwen N, Driessen AJ. 2002. SecDFyajC forms a heterotetrameric complex with YidC. Mol. Microbiol. 44:1397-405. (Pubitemid 34595769)
    • (2002) Molecular Microbiology , vol.44 , Issue.5 , pp. 1397-1405
    • Nouwen, N.1    Driessen, A.J.M.2
  • 51
    • 4544234959 scopus 로고    scopus 로고
    • 0 ATP synthase
    • DOI 10.1074/jbc.M405490200
    • Yi L, Celebi N, Chen M, Dalbey RE. 2004. Sec/SRP requirements and energetics of membrane insertion of subunits a, b, and c of the Escherichia coli F1F0 ATP synthase. J. Biol. Chem. 279:39260-267. (Pubitemid 39258187)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.38 , pp. 39260-39267
    • Yi, L.1    Celebi, N.2    Chen, M.3    Dalbey, R.E.4
  • 53
    • 33645077311 scopus 로고    scopus 로고
    • Membrane biogenesis of subunit II of cytochrome bo oxidase: Contrasting requirements for insertion of N-terminal and C-terminal domains
    • Celebi N, Yi L, Facey SJ, Kuhn A, Dalbey RE. 2006. Membrane biogenesis of subunit II of cytochrome bo oxidase: contrasting requirements for insertion of N-terminal and C-terminal domains. J. Mol. Biol. 357:1428-436.
    • (2006) J. Mol. Biol. , vol.357 , pp. 1428-1436
    • Celebi, N.1    Yi, L.2    Facey, S.J.3    Kuhn, A.4    Dalbey, R.E.5
  • 54
    • 33744535529 scopus 로고    scopus 로고
    • Distinct requirements for translocation of the N-tail and C-tail of the Escherichia coli inner membrane protein CyoA
    • DOI 10.1074/jbc.M511357200
    • van Bloois E, Haan GJ, de Gier JW, Oudega B, Luirink J. 2006. Distinct requirements for translocation of the N-tail and C-tail of the Escherichia coli inner membrane protein CyoA. J. Biol. Chem. 281:10002-9. (Pubitemid 43864533)
    • (2006) Journal of Biological Chemistry , vol.281 , Issue.15 , pp. 10002-10009
    • Van Bloois, E.1    Haan, G.-J.2    De Gier, J.-W.3    Oudega, B.4    Luirink, J.5
  • 55
    • 33744958176 scopus 로고    scopus 로고
    • Subunit a of cytochrome o oxidase requires both YidC and SecYEG for membrane insertion
    • DOI 10.1074/jbc.M600048200
    • du Plessis DJ, Nouwen N, Driessen AJ. 2006. Subunit a of cytochrome o oxidase requires both YidC and SecYEG for membrane insertion. J. Biol. Chem. 281:12248-252. (Pubitemid 43855308)
    • (2006) Journal of Biological Chemistry , vol.281 , Issue.18 , pp. 12248-12252
    • Du Plessis, D.J.F.1    Nouwen, N.2    Driessen, A.J.M.3
  • 56
    • 77950510571 scopus 로고    scopus 로고
    • Conserved negative charges in the transmembrane segments of subunit K of the NADH:ubiquinone oxidoreductase determine its dependence on YidC for membrane insertion
    • Price CE, Driessen AJ. 2010. Conserved negative charges in the transmembrane segments of subunit K of the NADH:ubiquinone oxidoreductase determine its dependence on YidC for membrane insertion. J. Biol. Chem. 285:3575-581.
    • (2010) J. Biol. Chem. , vol.285 , pp. 3575-3581
    • Price, C.E.1    Driessen, A.J.2
  • 57
    • 8844251544 scopus 로고    scopus 로고
    • The two membrane segments of leader peptidase partition one by one into the lipid bilayer via a Sec/YidC interface
    • DOI 10.1038/sj.embor.7400261
    • Houben EN, ten Hagen-Jongman CM, Brunner J, Oudega B, Luirink J. 2004. The two membrane segments of leader peptidase partition one by one into the lipid bilayer via a Sec/YidC interface. EMBO Rep. 5:970-975. (Pubitemid 39534454)
    • (2004) EMBO Reports , vol.5 , Issue.10 , pp. 970-975
    • Houben, E.N.G.1    Ten Hagen-Jongman, C.M.2    Brunner, J.3    Oudega, B.4    Luirink, J.5
  • 58
    • 0034859711 scopus 로고    scopus 로고
    • YidC, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids
    • DOI 10.1093/embo-reports/kve154
    • Beck K, Eisner G, Trescher D, Dalbey RE, Brunner J, Muller M. 2001. Yid C, an assembly site for polytopic Escherichia coli membrane proteins located in immediate proximity to the SecYE translocon and lipids. EMBO Rep. 2:709-714. (Pubitemid 32798714)
    • (2001) EMBO Reports , vol.2 , Issue.8 , pp. 709-714
    • Beck, K.1    Eisner, G.2    Trescher, D.3    Dalbey, R.E.4    Brunner, J.5    Muller, M.6
  • 59
    • 2442585126 scopus 로고    scopus 로고
    • Role of YidC in folding of polytopic membrane proteins
    • DOI 10.1083/jcb.200402067
    • Nagamori S, Smirnova IN, Kaback HR. 2004. Role of YidC in folding of polytopic membrane proteins. J. Cell Biol. 165:53-62. (Pubitemid 38649176)
    • (2004) Journal of Cell Biology , vol.165 , Issue.1 , pp. 53-62
    • Nagamori, S.1    Smirnova, I.N.2    Kaback, H.R.3
  • 60
    • 0024381621 scopus 로고
    • Both a short hydrophobic domain and a carboxyl-terminal hydrophilic region are important for signal function in the Escherichia coli leader peptidase
    • Zhu HY, Dalbey RE. 1989. Both a short hydrophobic domain and a carboxyl-terminal hydrophilic region are important for signal function in the Escherichia coli leader peptidase. J. Biol. Chem. 264:11833-838. (Pubitemid 19185350)
    • (1989) Journal of Biological Chemistry , vol.264 , Issue.20 , pp. 11833-11838
    • Zhu, H.-Y.1    Dalbey, R.E.2
  • 61
    • 0028134990 scopus 로고
    • Mutations eliminating the protein export function of a membrane-spanning sequence
    • Lee E, Manoil C. 1994. Mutations eliminating the protein export function of a membrane-spanning sequence. J. Biol. Chem. 269:28822-828. (Pubitemid 24366724)
    • (1994) Journal of Biological Chemistry , vol.269 , Issue.46 , pp. 28822-28828
    • Lee, E.1    Manoil, C.2
  • 62
    • 0032540320 scopus 로고    scopus 로고
    • The proton motive force, acting on acidic residues, promotes translocation of amino-terminal domains of membrane proteins when the hydrophobicity of the translocation signal is low
    • DOI 10.1074/jbc.273.16.9927
    • Delgado-Partin VM, Dalbey RE. 1998. The proton motive force, acting on acidic residues, promotes translocation of amino-terminal domains of membrane proteins when the hydrophobicity of the translocation signal is low. J. Biol. Chem. 273:9927-934. (Pubitemid 28183092)
    • (1998) Journal of Biological Chemistry , vol.273 , Issue.16 , pp. 9927-9934
    • Delgado-Partin, V.M.1    Dalbey, R.E.2
  • 63
    • 37349063087 scopus 로고    scopus 로고
    • Features of transmembrane segments that promote the lateral release from the translocase into the lipid phase
    • DOI 10.1021/bi701398y
    • Xie K, Hessa T, Seppala S, Rapp M, Heijne G, Dalbey RE. 2007. Features of transmembrane segments that promote the lateral release from the translocase into the lipid phase. Biochemistry 46:15153-161. (Pubitemid 350308906)
    • (2007) Biochemistry , vol.46 , Issue.51 , pp. 15153-15161
    • Xie, K.1    Hessa, T.2    Seppala, S.3    Rapp, M.4    Von Heijne, G.5    Dalbey, R.E.6
  • 64
    • 0022392632 scopus 로고
    • An artificial anchor domain: Hydrophobicity suffices to stop transfer
    • Davis NG, Model P. 1985. An artificial anchor domain: hydrophobicity suffices to stop transfer. Cell 41:607-614. (Pubitemid 16219430)
    • (1985) Cell , vol.41 , Issue.2 , pp. 607-614
    • Davis, N.G.1    Model, P.2
  • 65
    • 0029060799 scopus 로고
    • Artificial transmembrane segments. Requirements for stop transfer and polypeptide orientation
    • Chen H, Kendall DA. 1995. Artificial transmembrane segments. Requirements for stop transfer and polypeptide orientation. J. Biol. Chem. 270:14115-122.
    • (1995) J. Biol. Chem. , vol.270 , pp. 14115-14122
    • Chen, H.1    Kendall, D.A.2
  • 67
    • 33845343261 scopus 로고    scopus 로고
    • Membrane-protein topology
    • DOI 10.1038/nrm2063, PII NRM2063
    • von Heijne G. 2006. Membrane-protein topology. Nat. Rev. Mol. Cell Biol. 7:909-918. (Pubitemid 44871417)
    • (2006) Nature Reviews Molecular Cell Biology , vol.7 , Issue.12 , pp. 909-918
    • Von Heijne, G.1
  • 68
    • 0000651660 scopus 로고
    • The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology
    • Heijne GV. 1986. The distribution of positively charged residues in bacterial inner membrane proteins correlates with the trans-membrane topology. EMBO J. 5:3021-027.
    • (1986) EMBO J. , vol.5 , pp. 3021-3027
    • Heijne, G.V.1
  • 69
    • 0026609104 scopus 로고
    • The distribution of charged amino acids inmitochondrial inner-membrane proteins suggests different modes of membrane integration for nuclearly and mitochondrially encoded proteins
    • Gavel Y, vonHeijne G. 1992. The distribution of charged amino acids inmitochondrial inner-membrane proteins suggests different modes of membrane integration for nuclearly and mitochondrially encoded proteins. Eur. J. Biochem. 205:1207-215.
    • (1992) Eur. J. Biochem. , vol.205 , pp. 1207-1215
    • Gavel, Y.1    Von Heijne, G.2
  • 70
    • 0025896455 scopus 로고
    • The 'positive-inside rule' applies to thylakoid membrane proteins
    • Gavel Y, Steppuhn J, Herrmann R, von Heijne G. 1991. The 'positive-inside rule' applies to thylakoid membrane proteins. FEBS Lett. 282:41-46.
    • (1991) FEBS Lett. , vol.282 , pp. 41-46
    • Gavel, Y.1    Steppuhn, J.2    Herrmann, R.3    Von Heijne, G.4
  • 71
    • 0033342531 scopus 로고    scopus 로고
    • Recent advances in the understanding of membrane protein assembly and structure
    • DOI 10.1017/S0033583500003541
    • vonHeijne G. 1999. Recent advances in the understanding of membrane protein assembly and structure. Q. Rev. Biophys. 32:285-307. (Pubitemid 30636355)
    • (1999) Quarterly Reviews of Biophysics , vol.32 , Issue.4 , pp. 285-307
    • Von Heijne, G.1
  • 72
    • 0025059797 scopus 로고
    • The role of charged amino acids in the localization of secreted and membrane proteins
    • Boyd D, Beckwith J. 1990. The role of charged amino acids in the localization of secreted and membrane proteins. Cell 62:1031-033.
    • (1990) Cell , vol.62 , pp. 1031-1033
    • Boyd, D.1    Beckwith, J.2
  • 73
    • 0025285274 scopus 로고
    • Positively charged residues are important determinants of membrane protein topology
    • Dalbey RE. 1990. Positively charged residues are important determinants of membrane protein topology. Trends Biochem. Sci. 15:253-257. (Pubitemid 20214678)
    • (1990) Trends in Biochemical Sciences , vol.15 , Issue.7 , pp. 253-257
    • Dalbey, R.E.1
  • 74
    • 0026716643 scopus 로고
    • Membrane protein structure prediction. Hydrophobicity analysis and the positiveinside rule
    • von Heijne G. 1992. Membrane protein structure prediction. Hydrophobicity analysis and the positiveinside rule. J. Mol. Biol. 225:487-494.
    • (1992) J. Mol. Biol. , vol.225 , pp. 487-494
    • Von Heijne, G.1
  • 75
    • 0030953689 scopus 로고    scopus 로고
    • Negatively charged amino acid residues play an active role in orienting the Sec-independent Pf3 coat protein in the Escherichia coli inner membrane
    • DOI 10.1093/emboj/16.9.2197
    • Kiefer D, Hu X, Dalbey R, Kuhn A. 1997. Negatively charged amino acid residues play an active role in orienting the Sec-independent Pf3 coat protein in the Escherichia coli inner membrane. EMBO J. 16:2197-204. (Pubitemid 27258623)
    • (1997) EMBO Journal , vol.16 , Issue.9 , pp. 2197-2204
    • Kiefer, D.1    Hu, X.2    Dalbey, R.3    Kuhn, A.4
  • 76
    • 0033584852 scopus 로고    scopus 로고
    • A single negatively charged residue affects the orientation of a membrane protein in the inner membrane of Escherichia coli only when it is located adjacent to a transmembrane domain
    • Rutz C, Rosenthal W, Schulein R. 1999. A single negatively charged residue affects the orientation of a membrane protein in the inner membrane of Escherichia coli only when it is located adjacent to a transmembrane domain. J. Biol. Chem. 274:33757-763. (Pubitemid 129511692)
    • (1999) Journal of Biological Chemistry , vol.274 , Issue.47 , pp. 33757-33763
    • Rutz, C.1    Rosenthal, W.2    Schulein, R.3
  • 77
    • 0033937940 scopus 로고    scopus 로고
    • Understanding the insertion of transporters and other membrane proteins
    • DOI 10.1016/S0955-0674(00)00113-7
    • Dalbey RE, Chen M, Jiang F, Samuelson JC. 2000. Understanding the insertion of transporters and other membrane proteins. Curr. Opin. Cell Biol. 12:435-442. (Pubitemid 30453593)
    • (2000) Current Opinion in Cell Biology , vol.12 , Issue.4 , pp. 435-442
    • Dalbey, R.E.1    Chen, M.2    Jiang, F.3    Samuelson, J.C.4
  • 78
    • 0028175016 scopus 로고
    • Topological "frustration" in multispanning E. coli inner membrane proteins
    • Gafvelin G, von Heijne G. 1994. Topological "frustration" in multispanning E. coli inner membrane proteins. Cell 77:401-412.
    • (1994) Cell , vol.77 , pp. 401-412
    • Gafvelin, G.1    Von Heijne, G.2
  • 79
    • 0025899560 scopus 로고
    • Decoding signals for membrane protein assembly using alkaline phosphatase fusions
    • McGovern K, Ehrmann M, Beckwith J. 1991. Decoding signals for membrane protein assembly using alkaline phosphatase fusions. EMBO J. 10:2773-782. (Pubitemid 21905294)
    • (1991) EMBO Journal , vol.10 , Issue.10 , pp. 2773-2782
    • McGovern, K.1    Ehrmann, M.2    Beckwith, J.3
  • 82
    • 0035379645 scopus 로고    scopus 로고
    • The internal repeats in theNa+/Ca2+ exchanger-related Escherichia coli protein YrbG have opposite membrane topologies
    • Saaf A, Baars L, von Heijne G. 2001. The internal repeats in theNa+/Ca2+ exchanger-related Escherichia coli protein YrbG have opposite membrane topologies. J. Biol. Chem. 276:18905-7.
    • (2001) J. Biol. Chem. , vol.276 , pp. 18905-7
    • Saaf, A.1    Baars, L.2    Von Heijne, G.3
  • 84
    • 27144549973 scopus 로고    scopus 로고
    • Sequential triage of transmembrane segments by Sec61α during biogenesis of a native multispanning membrane protein
    • DOI 10.1038/nsmb994, PII N994
    • Sadlish H, Pitonzo D, Johnson AE, Skach WR. 2005. Sequential triage of transmembrane segments by Sec61alpha during biogenesis of a native multispanning membrane protein. Nat. Struct. Mol. Biol. 12:870-878. (Pubitemid 41486710)
    • (2005) Nature Structural and Molecular Biology , vol.12 , Issue.10 , pp. 870-878
    • Sadlish, H.1    Pitonzo, D.2    Johnson, A.E.3    Skach, W.R.4
  • 85
    • 49649117794 scopus 로고    scopus 로고
    • Biogenesis ofMalF and the MalFGK(2) maltose transport complex in Escherichia coli requires YidC
    • Wagner S, Pop OI, Haan GJ, Baars L, Koningstein G, et al. 2008. Biogenesis ofMalF and the MalFGK(2) maltose transport complex in Escherichia coli requires YidC. J. Biol. Chem. 283:17881-890.
    • (2008) J. Biol. Chem. , vol.283 , pp. 17881-17890
    • Wagner, S.1    Pop, O.I.2    Haan, G.J.3    Baars, L.4    Koningstein, G.5
  • 86
    • 0032530656 scopus 로고    scopus 로고
    • Phospholipid-assisted protein folding: Phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease
    • DOI 10.1093/emboj/17.18.5255
    • Bogdanov M, Dowhan W. 1998. Phospholipid-assisted protein folding: phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. EMBO J. 17:5255-264. (Pubitemid 28427041)
    • (1998) EMBO Journal , vol.17 , Issue.18 , pp. 5255-5264
    • Bogdanov, M.1    Dowhan, W.2
  • 87
    • 67650732710 scopus 로고    scopus 로고
    • Lipid-dependent membrane protein topogenesis
    • Dowhan W, Bogdanov M. 2009. Lipid-dependent membrane protein topogenesis. Annu. Rev. Biochem. 78:515-540.
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 515-540
    • Dowhan, W.1    Bogdanov, M.2
  • 88
    • 0346749514 scopus 로고    scopus 로고
    • Reversible Topological Organization within a Polytopic Membrane Protein is Governed by a Change in Membrane Phospholipid Composition
    • DOI 10.1074/jbc.M309840200
    • Zhang W, Bogdanov M, Pi J, Pittard AJ, Dowhan W. 2003. Reversible topological organization within a polytopic membrane protein is governed by a change in membrane phospholipid composition. J. Biol. Chem. 278:50128-135. (Pubitemid 37548850)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.50 , pp. 50128-50135
    • Zhang, W.1    Bogdanov, M.2    Pi, J.3    Pittard, A.J.4    Dowhan, W.5
  • 89
    • 0036566310 scopus 로고    scopus 로고
    • A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition
    • DOI 10.1093/emboj/21.9.2107
    • Bogdanov M, Heacock PN, Dowhan W. 2002. A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J. 21:2107-116. (Pubitemid 34516769)
    • (2002) EMBO Journal , vol.21 , Issue.9 , pp. 2107-2116
    • Bogdanov, M.1    Heacock, P.N.2    Dowhan, W.3
  • 90
    • 51649107357 scopus 로고    scopus 로고
    • To flip or not to flip: Lipid-protein charge interactions are a determinant of final membrane protein topology
    • Bogdanov M, Xie J, Heacock P, Dowhan W. 2008. To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology. J. Cell Biol. 182:925-935.
    • (2008) J. Cell Biol. , vol.182 , pp. 925-935
    • Bogdanovm Xie, J.1    Heacock, P.2    Dowhan, W.3
  • 92
    • 0032080907 scopus 로고    scopus 로고
    • Interaction of transmembrane helices by a knobs-into-holes packing characteristic of soluble coiled coils
    • DOI 10.1002/(SICI)1097-0134(19980501)31:2<150::AID-PROT5>3.0.CO;2-Q
    • Langosch D, Heringa J. 1998. Interaction of transmembrane helices by a knobs-into-holes packing characteristic of soluble coiled coils. Proteins 31:150-159. (Pubitemid 28198707)
    • (1998) Proteins: Structure, Function and Genetics , vol.31 , Issue.2 , pp. 150-159
    • Langosch, D.1    Heringa, J.2
  • 94
    • 0027050182 scopus 로고
    • Sequence specificity in the dimerization of transmembrane α-helices
    • DOI 10.1021/bi00166a002
    • Lemmon MA, Flanagan JM, Treutlein HR, Zhang J, Engelman DM. 1992. Sequence specificity in the dimerization of transmembrane alpha-helices. Biochemistry 31:12719-725. (Pubitemid 23027049)
    • (1992) Biochemistry , vol.31 , Issue.51 , pp. 12719-12725
    • Lemmon, M.A.1    Flanagan, J.M.2    Treutlein, H.R.3    Zhang, J.4    Engelman, D.M.5
  • 95
    • 0034711953 scopus 로고    scopus 로고
    • The GxxxG motif: A framework for transmembrane helix-helix association
    • Russ WP, Engelman DM. 2000. The GxxxG motif: a framework for transmembrane helix-helix association. J. Mol. Biol. 296:911-919.
    • (2000) J. Mol. Biol. , vol.296 , pp. 911-919
    • Russ, W.P.1    Engelman, D.M.2
  • 96
    • 0034711958 scopus 로고    scopus 로고
    • Statistical analysis of amino acid patterns in transmembrane helices: TheGxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions
    • Senes A, Gerstein M, Engelman DM. 2000. Statistical analysis of amino acid patterns in transmembrane helices: theGxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions. J. Mol. Biol. 296:921-936.
    • (2000) J. Mol. Biol. , vol.296 , pp. 921-936
    • Senes, A.1    Gerstein, M.2    Engelman, D.M.3
  • 97
    • 0030932407 scopus 로고    scopus 로고
    • Transmembrane helix dimer: Structure and implications
    • DOI 10.1126/science.276.5309.131
    • MacKenzie KR, Prestegard JH, Engelman DM. 1997. A transmembrane helix dimer: structure and implications. Science 276:131-133. (Pubitemid 27161261)
    • (1997) Science , vol.276 , Issue.5309 , pp. 131-133
    • MacKenzie, K.R.1    Prestegard, J.H.2    Engelman, D.M.3
  • 99
    • 0033515557 scopus 로고    scopus 로고
    • A heptadmotif of leucine residues found inmembrane proteins can drive self-assembly of artificial transmembrane segments
    • Gurezka R, Laage R, Brosig B, Langosch D. 1999. A heptadmotif of leucine residues found inmembrane proteins can drive self-assembly of artificial transmembrane segments. J. Biol. Chem. 274:9265-270.
    • (1999) J. Biol. Chem. , vol.274 , pp. 9265-9270
    • Gurezka, R.1    Laage, R.2    Brosig, B.3    Langosch, D.4
  • 101
    • 77449104569 scopus 로고    scopus 로고
    • Ionic interactions promote transmembrane helix-helix association depending on sequence context
    • Herrmann JR, Fuchs A, Panitz JC, Eckert T, Unterreitmeier S, et al. 2010. Ionic interactions promote transmembrane helix-helix association depending on sequence context. J. Mol. Biol. 396:452-461.
    • (2010) J. Mol. Biol. , vol.396 , pp. 452-461
    • Herrmann, J.R.1    Fuchs, A.2    Panitz, J.C.3    Eckert, T.4    Unterreitmeier, S.5
  • 103
    • 4143085058 scopus 로고    scopus 로고
    • Folding of helical membrane proteins: The role of polar, GxxxG-like and proline motifs
    • DOI 10.1016/j.sbi.2004.07.007, PII S0959440X04001149
    • Senes A, Engel DE, DeGrado WF. 2004. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs. Curr. Opin. Struct. Biol. 14:465-479. (Pubitemid 39094354)
    • (2004) Current Opinion in Structural Biology , vol.14 , Issue.4 , pp. 465-479
    • Senes, A.1    Engel, D.E.2    Degrado, W.F.3
  • 104
    • 4544233713 scopus 로고    scopus 로고
    • YidC family members are involved in the membrane insertion, lateral integration, folding, and assembly of membrane proteins
    • DOI 10.1083/jcb.200405161
    • Dalbey RE, Kuhn A. 2004. YidC family members are involved in the membrane insertion, lateral integration, folding, and assembly of membrane proteins. J. Cell Biol. 166:769-774. (Pubitemid 39249830)
    • (2004) Journal of Cell Biology , vol.166 , Issue.6 , pp. 769-774
    • Dalbey, R.E.1    Kuhn, A.2
  • 105
    • 0033607504 scopus 로고    scopus 로고
    • Molecular architecture of the rotary motor in ATP synthase
    • Stock D, Leslie AG, Walker JE. 1999. Molecular architecture of the rotary motor in ATP synthase. Science 286:1700-5. (Pubitemid 129515869)
    • (1999) Science , vol.286 , Issue.5445 , pp. 1700-1705
    • Stock, D.1    Leslie, A.G.W.2    Walker, J.E.3
  • 106
    • 27644566520 scopus 로고    scopus 로고
    • 0 symmetry mismatch is not obligatory
    • DOI 10.1038/sj.embor.7400517, PII 7400517
    • Pogoryelov D, Yu J, Meier T, Vonck J, Dimroth P, Muller DJ. 2005. The c15 ring of the Spirulina platensis F-ATP synthase: F1/F0 symmetry mismatch is not obligatory. EMBO Rep. 6:1040-044. (Pubitemid 41637648)
    • (2005) EMBO Reports , vol.6 , Issue.11 , pp. 1040-1044
    • Pogoryelov, D.1    Yu, J.2    Meier, T.3    Vonck, J.4    Dimroth, P.5    Muller, D.J.6
  • 107
    • 17844367330 scopus 로고    scopus 로고
    • +-ATPase from Ilyobacter tartaricus
    • DOI 10.1126/science.1111199
    • Meier T, Polzer P, Diederichs K, Welte W, Dimroth P. 2005. Structure of the rotor ring of F-type Na+-ATPase from Ilyobacter tartaricus. Science 308:659-662. (Pubitemid 40594380)
    • (2005) Science , vol.308 , Issue.5722 , pp. 659-662
    • Meier, T.1    Polzer, P.2    Diederichs, K.3    Welte, W.4    Dimroth, P.5
  • 109
    • 0034466405 scopus 로고    scopus 로고
    • The oligomeric subunit c rotor in the Fo sector of ATP synthase: Unresolved questions in our understanding of function
    • Fillingame RH, Jiang W, Dmitriev OY. 2000. The oligomeric subunit c rotor in the Fo sector of ATP synthase: unresolved questions in our understanding of function. J. Bioenerg. Biomembr. 32:433-439.
    • (2000) J. Bioenerg. Biomembr. , vol.32 , pp. 433-439
    • Fillingame, R.H.1    Jiang, W.2    Dmitriev, O.Y.3
  • 111
    • 44349098168 scopus 로고    scopus 로고
    • The charge distribution in the cytoplasmic loop of subunit c of the F1F0 ATPase is a determinant for YidC targeting
    • Kol S, Nouwen N, Driessen AJ. 2008. The charge distribution in the cytoplasmic loop of subunit c of the F1F0 ATPase is a determinant for YidC targeting. J. Biol. Chem. 283:9871-877.
    • (2008) J. Biol. Chem. , vol.283 , pp. 9871-9877
    • Kol, S.1    Nouwen, N.2    Driessen, A.J.3
  • 113
    • 0034303479 scopus 로고    scopus 로고
    • Efficient membrane assembly of the KcsA potassium channel in Escherichia coli requires the protonmotive force
    • van Dalen A, Schrempf H, Killian JA, de Kruijff B. 2000. Efficient membrane assembly of the KcsA potassium channel in Escherichia coli requires the protonmotive force. EMBO Rep. 1:340-346.
    • (2000) EMBO Rep. , vol.1 , pp. 340-346
    • Van Dalen, A.1    Schrempf, H.2    Killian, J.A.3    De Kruijff, B.4
  • 114
    • 0037196414 scopus 로고    scopus 로고
    • + channel KcsA
    • DOI 10.1016/S0014-5793(01)03278-1, PII S0014579301032781
    • van Dalen A, van der Laan M, Driessen AJ, Killian JA, de Kruijff B. 2002. Components required for membrane assembly of newly synthesized K+ channel KcsA. FEBS Lett. 511:51-58. (Pubitemid 34127822)
    • (2002) FEBS Letters , vol.511 , Issue.1-3 , pp. 51-58
    • Dalen, A.1    Laan, M.2    Driessen, A.J.M.3    Killian J.Antoinette4    Kruijff, B.5
  • 115
    • 0032545321 scopus 로고    scopus 로고
    • Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel
    • DOI 10.1126/science.282.5397.2220
    • Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC. 1998. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282:2220-226. (Pubitemid 29004063)
    • (1998) Science , vol.282 , Issue.5397 , pp. 2220-2226
    • Chang, G.1    Spencer, R.H.2    Lee, A.T.3    Barclay, M.T.4    Rees, D.C.5
  • 116
    • 69949160755 scopus 로고    scopus 로고
    • Structure of a tetrameric MscL in an expanded intermediate state
    • Liu Z, Gandhi CS, Rees DC. 2009. Structure of a tetrameric MscL in an expanded intermediate state. Nature 461:120-124.
    • (2009) Nature , vol.461 , pp. 120-124
    • Liu, Z.1    Gandhi, C.S.2    Rees, D.C.3
  • 117
    • 0034525943 scopus 로고    scopus 로고
    • Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins
    • DOI 10.1146/annurev.cellbio.16.1.51
    • Dalbey RE, Kuhn A. 2000. Evolutionarily related insertion pathways of bacterial, mitochondrial, and thylakoid membrane proteins. Annu. Rev. Cell Dev. Biol. 16:51-87. (Pubitemid 32037500)
    • (2000) Annual Review of Cell and Developmental Biology , vol.16 , pp. 51-87
    • Dalbey, R.E.1    Kuhn, A.2
  • 118
    • 0025142363 scopus 로고
    • Initial steps in protein membrane insertion. Bacteriophage M13 procoat protein binds to the membrane surface by electrostatic interaction
    • Gallusser A, Kuhn A. 1990. Initial steps in protein membrane insertion. Bacteriophage M13 procoat protein binds to the membrane surface by electrostatic interaction. EMBO J. 9:2723-729.
    • (1990) EMBO J. , vol.9 , pp. 2723-2729
    • Gallusser, A.1    Kuhn, A.2
  • 119
    • 0023054119 scopus 로고
    • Both hydrophobic domains ofM13 procoat are required to initiate membrane insertion
    • Kuhn A, Kreil G, WicknerW. 1986. Both hydrophobic domains ofM13 procoat are required to initiate membrane insertion. EMBO J. 5:3681-685.
    • (1986) EMBO J. , vol.5 , pp. 3681-3685
    • Kuhn, A.1    Kreil, G.2    Wickner, W.3
  • 120
    • 0035860693 scopus 로고    scopus 로고
    • Function of YidC for the insertion ofM13 procoat protein in E. coli: Translocation of mutants that show differences in their membrane potential dependence and Sec requirement
    • Samuelson JC, Jiang F, Yi L, Chen M, deGier JW, et al. 2001. Function of YidC for the insertion ofM13 procoat protein in E. coli: translocation of mutants that show differences in their membrane potential dependence and Sec requirement. J. Biol. Chem. 276:34847-852.
    • (2001) J. Biol. Chem. , vol.276 , pp. 34847-34852
    • Samuelson, J.C.1    Jiang, F.2    Yi, L.3    Chen, M.4    Degier, J.W.5
  • 121
    • 0020479149 scopus 로고
    • The biosynthesis of membrane-bound M13 coat protein. Energetics and assembly intermediates
    • Zimmermann R, Watts C, WicknerW. 1982. The biosynthesis of membrane-bound M13 coat protein. Energetics and assembly intermediates. J. Biol. Chem. 257:6529-536.
    • (1982) J. Biol. Chem. , vol.257 , pp. 6529-6536
    • Zimmermann, R.1    Watts, C.2    Wickner, W.3
  • 122
    • 0028935007 scopus 로고
    • The translocation of negatively charged residues across the membrane is driven by the electrochemical potential: Evidence for an electrophoresis-like membrane transfer mechanism
    • Cao G, Kuhn A, Dalbey RE. 1995. The translocation of negatively charged residues across the membrane is driven by the electrochemical potential: evidence for an electrophoresis-like membrane transfer mechanism. EMBO J. 14:866-875.
    • (1995) EMBO J. , vol.14 , pp. 866-875
    • Cao, G.1    Kuhn, A.2    Dalbey, R.E.3
  • 123
    • 0032577317 scopus 로고    scopus 로고
    • The major coat protein of filamentous bacteriophage f1 specifically pairs in the bacterial cytoplasmic membrane
    • DOI 10.1006/jmbi.1998.1778
    • Haigh NG, Webster RE. 1998. The major coat protein of filamentous bacteriophage f1 specifically pairs in the bacterial cytoplasmic membrane. J. Mol. Biol. 279:19-29. (Pubitemid 28252126)
    • (1998) Journal of Molecular Biology , vol.279 , Issue.1 , pp. 19-29
    • Haigh, N.G.1    Webster, R.E.2
  • 124
    • 34147182082 scopus 로고    scopus 로고
    • Cysteine residues in the transmembrane regions of M13 procoat protein suggest that oligomeric coat proteins assemble onto phage progeny
    • DOI 10.1128/JB.01551-06
    • Nagler C, Nagler G, Kuhn A. 2007. Cysteine residues in the transmembrane regions of M13 procoat protein suggest that oligomeric coat proteins assemble onto phage progeny. J. Bacteriol. 189:2897-905. (Pubitemid 46556072)
    • (2007) Journal of Bacteriology , vol.189 , Issue.7 , pp. 2897-2905
    • Nagler, C.1    Nagler, G.2    Kuhn, A.3
  • 125
    • 1942469334 scopus 로고    scopus 로고
    • The affinity of GXXXG motifs in transmembrane helix-helix interactions is modulated by long-range communication
    • DOI 10.1074/jbc.M313936200
    • Melnyk RA, Kim S, Curran AR, Engelman DM, Bowie JU, Deber CM. 2004. The affinity of GXXXG motifs in transmembrane helix-helix interactions is modulated by long-range communication. J. Biol. Chem. 279:16591-597. (Pubitemid 38509359)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.16 , pp. 16591-16597
    • Melnyk, R.A.1    Kim, S.2    Curran, A.R.3    Engelman, D.M.4    Bowie, J.U.5    Deber, C.M.6
  • 126
    • 0025675488 scopus 로고
    • The function of a leader peptide in translocating charged amino acyl residues across a membrane
    • Rohrer J, Kuhn A. 1990. The function of a leader peptide in translocating charged amino acyl residues across a membrane. Science 250:1418-421. (Pubitemid 120031863)
    • (1990) Science , vol.250 , Issue.4986 , pp. 1418-1421
    • Rohrer, J.1    Kuhn, A.2
  • 127
    • 77953028745 scopus 로고    scopus 로고
    • Biogenesis of membrane bound respiratory complexes in Escherichia coli
    • Price CE, Driessen AJM. 2010. Biogenesis of membrane bound respiratory complexes in Escherichia coli. Biochim. Biophys. Acta 1803:748-766.
    • (2010) Biochim. Biophys. Acta , vol.1803 , pp. 748-766
    • Price, C.E.1    Driessen, A.J.M.2
  • 129
    • 2942570076 scopus 로고    scopus 로고
    • A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region
    • DOI 10.1111/j.1365-2958.2004.04044.x
    • Buddelmeijer N, Beckwith J. 2004. A complex of the Escherichia coli cell division proteins Fts L, FtsB and FtsQ forms independently of its localization to the septal region. Mol. Microbiol. 52:1315-327. (Pubitemid 38746306)
    • (2004) Molecular Microbiology , vol.52 , Issue.5 , pp. 1315-1327
    • Buddelmeijer, N.1    Beckwith, J.2
  • 130
    • 4043169178 scopus 로고    scopus 로고
    • Evidence for multiple pathways in the assembly of the Escherichia coli maltose transport complex
    • DOI 10.1074/jbc.M403796200
    • Kennedy KA, Gachelet EG, Traxler B. 2004. Evidence for multiple pathways in the assembly of the Escherichia coli maltose transport complex. J. Biol. Chem. 279:33290-297. (Pubitemid 39062976)
    • (2004) Journal of Biological Chemistry , vol.279 , Issue.32 , pp. 33290-33297
    • Kennedy, K.A.1    Gachelet, E.G.2    Traxler, B.3
  • 131
    • 55749095038 scopus 로고    scopus 로고
    • Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging
    • Leake MC, Greene NP, Godun RM, Granjon T, Buchanan G, et al. 2008. Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging. Proc. Natl. Acad. Sci. USA 105:15376-381.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 15376-15381
    • Leake, M.C.1    Greene, N.P.2    Godun, R.M.3    Granjon, T.4    Buchanan, G.5
  • 132
    • 0032540273 scopus 로고    scopus 로고
    • Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (Complex I) at 22 A in ice
    • DOI 10.1006/jmbi.1998.1668
    • Grigorieff N. 1998. Three-dimensional structure of bovineNADH:ubiquinone oxidoreductase (complex I) at 22 A in ice. J. Mol. Biol. 277:1033-046. (Pubitemid 28190844)
    • (1998) Journal of Molecular Biology , vol.277 , Issue.5 , pp. 1033-1046
    • Grigorieff, N.1
  • 133
    • 33644872938 scopus 로고    scopus 로고
    • Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus
    • DOI 10.1126/science.1123809
    • Sazanov LA, Hinchliffe P. 2006. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311:1430-436. (Pubitemid 43376691)
    • (2006) Science , vol.311 , Issue.5766 , pp. 1430-1436
    • Sazanov, L.A.1    Hinchliffe, P.2
  • 134
    • 77952979824 scopus 로고    scopus 로고
    • The architecture of respiratory complex i
    • Efremov RG, Baradaran R, Sazanov LA. 2010. The architecture of respiratory complex I. Nature 465:441-45.
    • (2010) Nature , vol.465 , pp. 441-45
    • Efremov, R.G.1    Baradaranr Sazanov, L.A.2
  • 135
    • 55249119546 scopus 로고    scopus 로고
    • YidC is involved in the biogenesis of anaerobic respiratory complexes in the inner membrane of Escherichia coli
    • Price CE, Driessen AJ. 2008. YidC is involved in the biogenesis of anaerobic respiratory complexes in the inner membrane of Escherichia coli. J. Biol. Chem. 283:26921-927.
    • (2008) J. Biol. Chem. , vol.283 , pp. 26921-26927
    • Price, C.E.1    Driessen, A.J.2
  • 138
    • 0033788953 scopus 로고    scopus 로고
    • The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site
    • Abramson J, Riistama S, Larsson G, Jasaitis A, Svensson-Ek M, et al. 2000. The structure of the ubiquinol oxidase from Escherichia coli and its ubiquinone binding site. Nat. Struct. Biol. 7:910-917.
    • (2000) Nat. Struct. Biol. , vol.7 , pp. 910-917
    • Abramson, J.1    Riistama, S.2    Larsson, G.3    Jasaitis, A.4    Svensson-Ek, M.5
  • 139
    • 0030968582 scopus 로고    scopus 로고
    • 3 ubiquinol oxidase from Escherichia coli is a lipoprotein
    • DOI 10.1021/bi9709710
    • Ma J, Katsonouri A, GennisRB. 1997. Subunit II of the cytochrome bo3 ubiquinol oxidase from Escherichia coli is a lipoprotein. Biochemistry 36:11298-303. (Pubitemid 27408611)
    • (1997) Biochemistry , vol.36 , Issue.38 , pp. 11298-11303
    • Ma, J.1    Katsonouri, A.2    Gennis, R.B.3
  • 140
    • 37549029235 scopus 로고    scopus 로고
    • Mechanism and hydrophobic forces driving membrane protein insertion of subunit II of cytochrome bo3 oxidase
    • Celebi N, Dalbey RE, Yuan J. 2008. Mechanism and hydrophobic forces driving membrane protein insertion of subunit II of cytochrome bo3 oxidase. J. Mol. Biol. 375:1282-292.
    • (2008) J. Mol. Biol. , vol.375 , pp. 1282-1292
    • Celebi, N.1    Dalbey, R.E.2    Yuan, J.3
  • 141
    • 29444459398 scopus 로고    scopus 로고
    • 3-type cytochrome c oxidase complex
    • DOI 10.1016/j.jmb.2005.11.039, PII S0022283605014270
    • Kulajta C, Thumfart JO, Haid S, Daldal F, Koch HG. 2006. Multi-step assembly pathway of the cbb3- type cytochrome c oxidase complex. J. Mol. Biol. 355:989-1004. (Pubitemid 43012142)
    • (2006) Journal of Molecular Biology , vol.355 , Issue.5 , pp. 989-1004
    • Kulajta, C.1    Thumfart, J.O.2    Haid, S.3    Daldal, F.4    Koch, H.-G.5
  • 143
    • 0034613389 scopus 로고    scopus 로고
    • Insights into the rotary catalytic mechanism of F0F1 ATP synthase from the cross-linking of subunits b and c in the Escherichia coli enzyme
    • Jones PC, Hermolin J, Jiang W, Fillingame RH. 2000. Insights into the rotary catalytic mechanism of F0F1 ATP synthase from the cross-linking of subunits b and c in the Escherichia coli enzyme. J. Biol. Chem. 275:31340-346.
    • (2000) J. Biol. Chem. , vol.275 , pp. 31340-31346
    • Jones, P.C.1    Hermolin, J.2    Jiang, W.3    Fillingame, R.H.4
  • 144
    • 0032499690 scopus 로고    scopus 로고
    • Interacting helical faces of subunits a and c in the F1Fo ATP synthase of Escherichia coli defined by disulfide cross-linking
    • Jiang W, Fillingame RH. 1998. Interacting helical faces of subunits a and c in the F1Fo ATP synthase of Escherichia coli defined by disulfide cross-linking. Proc. Natl. Acad. Sci. USA 95:6607-612.
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 6607-6612
    • Jiang, W.1    Fillingame, R.H.2
  • 145
    • 0028989609 scopus 로고
    • The F0 complex of the Escherichia coli ATP synthase. Investigation by electron spectroscopic imaging and immunoelectron microscopy
    • Birkenḧager R, Hoppert M, Deckers-Hebestreit G, Mayer F, Altendorf K. 1995. The F0 complex of the Escherichia coli ATP synthase. Investigation by electron spectroscopic imaging and immunoelectron microscopy. Eur. J. Biochem. 230:58-67.
    • (1995) Eur. J. Biochem. , vol.230 , pp. 58-67
    • Birkenḧager, R.1    Hoppert, M.2    Deckers-Hebestreit, G.3    Mayer, F.4    Altendorf, K.5
  • 146
    • 66249132322 scopus 로고    scopus 로고
    • Torque generation and elastic power transmission in the rotary FoF1-ATPase
    • Junge W, Sielaff H, Engelbrecht S. 2009. Torque generation and elastic power transmission in the rotary FoF1-ATPase. Nature 459:364-370.
    • (2009) Nature , vol.459 , pp. 364-370
    • Sielaffh, J.1    Engelbrecht, S.2
  • 147
    • 34248138912 scopus 로고    scopus 로고
    • o-ATP synthase complex
    • DOI 10.1091/mbc.E06-10-0925
    • Jia L, Dienhart MK, Stuart RA. 2007. Oxa1 directly interacts with Atp9 and mediates its assembly into the mitochondrial F1Fo-ATP synthase complex. Mol. Biol. Cell 18:1897-908. (Pubitemid 46717569)
    • (2007) Molecular Biology of the Cell , vol.18 , Issue.5 , pp. 1897-1908
    • Jia, L.1    Dienhart, M.K.2    Stuart, R.A.3
  • 148
    • 57649119791 scopus 로고    scopus 로고
    • Mechanisms of YidC-mediated insertion and assembly of multimeric membrane protein complexes
    • Kol S, Nouwen N, Driessen AJ. 2008. Mechanisms of YidC-mediated insertion and assembly of multimeric membrane protein complexes. J. Biol. Chem. 283:31269-273.
    • (2008) J. Biol. Chem. , vol.283 , pp. 31269-31273
    • Kol, S.1    Nouwen, N.2    Driessen, A.J.3
  • 149
    • 70350443413 scopus 로고    scopus 로고
    • Bacillus subtilis SpoIIIJ and YqjG function in membrane protein biogenesis
    • Saller MJ, Fusetti F, Driessen AJ. 2009. Bacillus subtilis SpoIIIJ and YqjG function in membrane protein biogenesis. J. Bacteriol. 191:6749-757.
    • (2009) J. Bacteriol. , vol.191 , pp. 6749-6757
    • Saller, M.J.1    Fusetti, F.2    Driessen, A.J.3
  • 150
    • 71249147710 scopus 로고    scopus 로고
    • Alb4 of Arabidopsis promotes assembly and stabilization of a non chlorophyll-binding photosynthetic complex, the CF1CFo-ATP synthase
    • Benz M, Bals T, Gugel IL, Piotrowski M, Kuhn A, et al. 2009. Alb4 of Arabidopsis promotes assembly and stabilization of a non chlorophyll-binding photosynthetic complex, the CF1CFo-ATP synthase. Mol. Plant 2:1410-424.
    • (2009) Mol. Plant , vol.2 , pp. 1410-1424
    • Benz, M.1    Bals, T.2    Gugel, I.L.3    Piotrowski, M.4    Kuhn, A.5
  • 151
    • 0025738363 scopus 로고
    • Purification and characterization of the membrane-associated components of the maltose transport system from Escherichia coli
    • Davidson AL, Nikaido H. 1991. Purification and characterization of the membrane-associated components of the maltose transport system from Escherichia coli. J. Biol. Chem. 266:8946-951. (Pubitemid 21906602)
    • (1991) Journal of Biological Chemistry , vol.266 , Issue.14 , pp. 8946-8951
    • Davidson, A.L.1    Nikaido, H.2
  • 152
    • 36549018568 scopus 로고    scopus 로고
    • Crystal structure of a catalytic intermediate of the maltose transporter
    • DOI 10.1038/nature06264
    • Oldham ML, Khare D, Quiocho FA, Davidson AL, Chen J. 2007. Crystal structure of a catalytic intermediate of the maltose transporter. Nature 450:515-521. (Pubitemid 350190241)
    • (2007) Nature , vol.450 , Issue.7169 , pp. 515-521
    • Oldham, M.L.1    Khare, D.2    Quiocho, F.A.3    Davidson, A.L.4    Chen, J.5
  • 153
    • 0033525529 scopus 로고    scopus 로고
    • 2 ATP- binding cassette transporter of Escherichia coli
    • DOI 10.1074/jbc.274.10.6259
    • Kennedy KA, Traxler B. 1999. MalK forms a dimer independent of its assembly into the MalFGK2 ATP-binding cassette transporter of Escherichia coli. J. Biol. Chem. 274:6259-264. (Pubitemid 29111036)
    • (1999) Journal of Biological Chemistry , vol.274 , Issue.10 , pp. 6259-6264
    • Kennedy, K.A.1    Traxler, B.2
  • 154
    • 15844393588 scopus 로고    scopus 로고
    • Insertion of the polytopic membrane protein MalF is dependent on the bacterial secretion machinery
    • DOI 10.1074/jbc.271.21.12394
    • Traxler B, Murphy C. 1996. Insertion of the polytopic membrane protein MalF is dependent on the bacterial secretion machinery. J. Biol. Chem. 271:12394-400. (Pubitemid 26160907)
    • (1996) Journal of Biological Chemistry , vol.271 , Issue.21 , pp. 12394-12400
    • Traxler, B.1    Murphyll, C.2
  • 155
    • 16244380460 scopus 로고    scopus 로고
    • Export of complex cofactor-containing proteins by the bacterial Tat pathway
    • DOI 10.1016/j.tim.2005.02.002
    • Palmer T, Sargent F, Berks BC. 2005. Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol. 13:175-180. (Pubitemid 40463319)
    • (2005) Trends in Microbiology , vol.13 , Issue.4 , pp. 175-180
    • Palmer, T.1    Sargent, F.2    Berks, B.C.3
  • 156
    • 8844280791 scopus 로고    scopus 로고
    • Tat-dependent protein targeting in prokaryotes and chloroplasts
    • DOI 10.1016/j.bbamcr.2004.03.010, PII S0167488904000862
    • Robinson C, Bolhuis A. 2004. Tat-dependent protein targeting in prokaryotes and chloroplasts. Biochim. Biophys. Acta 1694:135-147. (Pubitemid 39535066)
    • (2004) Biochimica et Biophysica Acta - Molecular Cell Research , vol.1694 , Issue.1-3 SPEC.ISS. , pp. 135-147
    • Robinson, C.1    Bolhuis, A.2
  • 157
    • 36749045913 scopus 로고    scopus 로고
    • The twin-arginine transport system: Moving folded proteins across membranes
    • DOI 10.1042/BST0350835
    • Sargent F. 2007. The twin-arginine transport system: moving folded proteins acrossmembranes. Biochem. Soc. Trans. 35:835-847. (Pubitemid 350206379)
    • (2007) Biochemical Society Transactions , vol.35 , Issue.5 , pp. 835-847
    • Sargent, F.1
  • 158
    • 0029829590 scopus 로고    scopus 로고
    • A common export pathway for proteins binding complex redox cofactors?
    • Berks BC. 1996. A common export pathway for proteins binding complex redox cofactors? Mol. Microbiol. 22:393-404. (Pubitemid 26373825)
    • (1996) Molecular Microbiology , vol.22 , Issue.3 , pp. 393-404
    • Berks, B.C.1
  • 159
    • 50049087513 scopus 로고    scopus 로고
    • Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane-distinct translocases and mechanisms
    • Natale P, Br̈ user T, Driessen AJ. 2008. Sec- and Tat-mediated protein secretion across the bacterial cytoplasmic membrane-distinct translocases and mechanisms. Biochim. Biophys. Acta 1778:1735-756.
    • (2008) Biochim. Biophys. Acta , vol.1778 , pp. 1735-1756
    • Natale, P.1    Br̈user, T.2    Driessen, A.J.3
  • 160
    • 0040537042 scopus 로고    scopus 로고
    • Competition between Sec- and TAT-dependent protein translocation in Escherichia coli
    • DOI 10.1093/emboj/18.11.2982
    • Cristobal S, deGier JW, Nielsen H, von Heijne G. 1999. Competition between Sec- andTAT-dependent protein translocation in Escherichia coli. EMBO J. 18:2982-990. (Pubitemid 29255607)
    • (1999) EMBO Journal , vol.18 , Issue.11 , pp. 2982-2990
    • Cristobal, S.1    De Gier, J.-W.2    Nielsen, H.3    Von Heijne, G.4
  • 162
    • 0035827675 scopus 로고    scopus 로고
    • TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli
    • Bolhuis A, Mathers JE, Thomas JD, Barrett CM, Robinson C. 2001. TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J. Biol. Chem. 276:20213-219.
    • (2001) J. Biol. Chem. , vol.276 , pp. 20213-20219
    • Bolhuis, A.1    Mathers, J.E.2    Thomas, J.D.3    Barrett, C.M.4    Robinson, C.5
  • 163
    • 10744228022 scopus 로고    scopus 로고
    • Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli
    • DOI 10.1016/S1097-2765(03)00398-8
    • Alami M, Luke I, Deitermann S, Eisner G, Koch HG, et al. 2003. Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol. Cell 12:937-946. (Pubitemid 37352786)
    • (2003) Molecular Cell , vol.12 , Issue.4 , pp. 937-946
    • Alami, M.1    Luke, I.2    Deitermann, S.3    Eisner, G.4    Koch, H.-G.5    Brunner, J.6    Muller, M.7
  • 164
    • 0037092039 scopus 로고    scopus 로고
    • A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid ΔpH/Tat translocase
    • DOI 10.1083/jcb.200202048
    • Mori H, Cline K. 2002. A twin arginine signal peptide and the pH gradient trigger reversible assembly of the thylakoid pH/Tat translocase. J. Cell Biol. 157:205-210. (Pubitemid 34839817)
    • (2002) Journal of Cell Biology , vol.157 , Issue.2 , pp. 205-210
    • Mori, H.1    Cline, K.2
  • 165
    • 12344296658 scopus 로고    scopus 로고
    • The Escherichia coli twin-arginine translocation apparatus incorporates a distinct form of TatABC complex, spectrum of modular TatA complexes and minor TatAB complex
    • DOI 10.1016/j.jmb.2004.11.047, PII S0022283604015062
    • Oates J, Barrett CM, Barnett JP, Byrne KG, Bolhuis A, Robinson C. 2005. The Escherichia coli twinarginine translocation apparatus incorporates a distinct form of TatABC complex, spectrum of modular TatA complexes and minor TatAB complex. J. Mol. Biol. 346:295-305. (Pubitemid 40128322)
    • (2005) Journal of Molecular Biology , vol.346 , Issue.1 , pp. 295-305
    • Oates, J.1    Barrett, C.M.L.2    Barnett, J.P.3    Byrne, K.G.4    Bolhuis, A.5    Robinson, C.6
  • 167
    • 0002974259 scopus 로고
    • The rapidly metabolized 32,000-dalton polypeptide of the chloroplast is the'proteinaceous shield' regulating photosystem II electron transport and mediating diuron herbicide sensitivity
    • DOI 10.1073/pnas.78.3.1572
    • Mattoo AK, Pick U, Hoffman-Falk H, Edelman M. 1981. The rapidly metabolized 32, 000-dalton polypeptide of the chloroplast is the "proteinaceous shield" regulating photosystem II electron transport and mediating diuron herbicide sensitivity. Proc. Natl. Acad. Sci. USA 78:1572-576. (Pubitemid 11112166)
    • (1981) Proceedings of the National Academy of Sciences of the United States of America , vol.78 , Issue.3 , pp. 1572-1576
    • Mattoo, A.K.1    Pick, U.2    Hoffman-Falk, H.3    Edelman, M.4
  • 168
    • 0027199986 scopus 로고
    • Photoinhibition of photosystem. II. Inactivation, protein damage and turnover
    • DOI 10.1016/0005-2728(93)90134-2
    • Aro EM, Virgin I, Andersson B. 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochim. Biophys. Acta 1143:113-134. (Pubitemid 23201643)
    • (1993) Biochimica et Biophysica Acta - Bioenergetics , vol.1143 , Issue.2 , pp. 113-134
    • Aro, E.-M.1    Virgin, I.2    Andersson, B.3
  • 169
    • 0033081464 scopus 로고    scopus 로고
    • Interactions of ribosome nascent chain complexes of the chloroplast-encoded D1 thylakoid membrane protein with cpSRP54
    • DOI 10.1093/emboj/18.3.733
    • Nilsson R, Brunner J, Hoffman NE, van Wijk KJ. 1999. Interactions of ribosome nascent chain complexes of the chloroplast-encoded D1 thylakoid membrane protein with cpSRP54. EMBO J. 18:733-742. (Pubitemid 29057258)
    • (1999) EMBO Journal , vol.18 , Issue.3 , pp. 733-742
    • Nilsson, R.1    Brunner, J.2    Hoffman, N.E.3    Van Wijk, K.J.4
  • 170
    • 0035851097 scopus 로고    scopus 로고
    • ASecY homologue is involved in chloroplast-encoded D1 protein biogenesis
    • Zhang L, Paakkarinen V, Suorsa M, Aro EM. 2001.ASecY homologue is involved in chloroplast-encoded D1 protein biogenesis. J. Biol. Chem. 276:37809-814.
    • (2001) J. Biol. Chem. , vol.276 , pp. 37809-37814
    • Zhang, L.1    Paakkarinen, V.2    Suorsa, M.3    Aro, E.M.4
  • 172
    • 0030577385 scopus 로고    scopus 로고
    • 0 sector is a substrate of the FtsH protease in Escherichia coli
    • DOI 10.1016/S0014-5793(96)01283-5, PII S0014579396012835
    • Akiyama Y, Kihara A, Ito K. 1996. Subunit a of proton ATPase F0 sector is a substrate of the FtsH protease in Escherichia coli. FEBS Lett. 399:26-28. (Pubitemid 27007944)
    • (1996) FEBS Letters , vol.399 , Issue.1-2 , pp. 26-28
    • Akiyama, Y.1    Kihara, A.2    Ito, K.3
  • 173
    • 0029017127 scopus 로고
    • FtsH is required for proteolytic elimination of uncomplexed forms of Sec Y, an essential protein translocase subunit
    • Kihara A, Akiyama Y, Ito K. 1995. FtsH is required for proteolytic elimination of uncomplexed forms of Sec Y, an essential protein translocase subunit. Proc. Natl. Acad. Sci. USA 92:4532-536.
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 4532-4536
    • Kihara, A.1    Akiyama, Y.2    Ito, K.3
  • 174
    • 0033153237 scopus 로고    scopus 로고
    • Dislocation of membrane proteins in FtsH-mediated proteolysis
    • DOI 10.1093/emboj/18.11.2970
    • Kihara A, Akiyama Y, Ito K. 1999. Dislocation of membrane proteins in FtsH-mediated proteolysis. EMBO J. 18:2970-981. (Pubitemid 29255606)
    • (1999) EMBO Journal , vol.18 , Issue.11 , pp. 2970-2981
    • Kihara, A.1    Akiyama, Y.2    Koreaki, I.3
  • 175
    • 0034231476 scopus 로고    scopus 로고
    • Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis
    • Chiba S, Akiyama Y, Mori H, Matsuo E, Ito K. 2000. Length recognition at the N-terminal tail for the initiation of FtsH-mediated proteolysis. EMBO Rep. 1:47-52.
    • (2000) EMBO Rep. , vol.1 , pp. 47-52
    • Chiba, S.1    Akiyama, Y.2    Mori, H.3    Matsuo, E.4    Ito, K.5
  • 176
    • 25844456936 scopus 로고    scopus 로고
    • Proteolytic activity of HtpX, a membrane-bound and stress-controlled protease from Escherichia coli
    • DOI 10.1074/jbc.M506180200
    • Sakoh M, Ito K, Akiyama Y. 2005. Proteolytic activity of HtpX, amembrane-bound and stress-controlled protease from Escherichia coli. J. Biol. Chem. 280:33305-310. (Pubitemid 41397126)
    • (2005) Journal of Biological Chemistry , vol.280 , Issue.39 , pp. 33305-33310
    • Sakoh, M.1    Ito, K.2    Akiyama, Y.3
  • 177
    • 25844525796 scopus 로고    scopus 로고
    • Cellular functions, mechanism of action, and regulation of FtsH protease
    • DOI 10.1146/annurev.micro.59.030804.121316
    • Ito K, Akiyama Y. 2005. Cellular functions, mechanism of action, and regulation of FtsH protease. Annu. Rev. Microbiol. 59:211-231. (Pubitemid 41507430)
    • (2005) Annual Review of Microbiology , vol.59 , pp. 211-231
    • Ito, K.1    Akiyama, Y.2
  • 178
    • 71749117953 scopus 로고    scopus 로고
    • AAA proteases in mitochondria: Diverse functions of membrane-bound proteolytic machines
    • Tatsuta T, Langer T. 2009. AAA proteases in mitochondria: diverse functions of membrane-bound proteolytic machines. Res. Microbiol. 160:711-717.
    • (2009) Res. Microbiol. , vol.160 , pp. 711-717
    • Tatsuta, T.1    Langer, T.2
  • 179
    • 68449090734 scopus 로고    scopus 로고
    • Effects of antibiotics and a proto-oncogene homolog on destruction of protein translocator SecY
    • van Stelten J, Silva F, Belin D, Silhavy TJ. 2009. Effects of antibiotics and a proto-oncogene homolog on destruction of protein translocator SecY. Science 325:753-756.
    • (2009) Science , vol.325 , pp. 753-756
    • Van Stelten, J.1    Silva, F.2    Belin, D.3    Silhavy, T.J.4
  • 180
    • 0032577263 scopus 로고    scopus 로고
    • Different pathways for protein degradation by the FtsH/HflKC membrane-embedded protease complex: An implication from the interference by a mutant form of a new substrate protein, YccA
    • DOI 10.1006/jmbi.1998.1781
    • Kihara A, Akiyama Y, Ito K. 1998. Different pathways for protein degradation by the FtsH/HflKC membrane-embedded protease complex: an implication from the interference by a mutant form of a new substrate protein, YccA. J. Mol. Biol. 279:175-188. (Pubitemid 28252137)
    • (1998) Journal of Molecular Biology , vol.279 , Issue.1 , pp. 175-188
    • Kihara, A.1    Akiyama, Y.2    Ito, K.3
  • 181
    • 42049104126 scopus 로고    scopus 로고
    • Detection of cross-links between Fts H, Yid C, HflK/C suggests a linked role for these proteins in quality control upon insertion of bacterial inner membrane proteins
    • van Bloois E, DekkerHL, Froderberg L, Houben EN, Urbanus ML, et al. 2008. Detection of cross-links between Fts H, Yid C, HflK/C suggests a linked role for these proteins in quality control upon insertion of bacterial inner membrane proteins. FEBS Lett. 582:1419-424.
    • (2008) FEBS Lett. , vol.582 , pp. 1419-1424
    • Van Bloois, E.1    Dekkerhl Froderberg, L.2    Houben, E.N.3    Urbanus, M.L.4
  • 182
    • 0034681260 scopus 로고    scopus 로고
    • Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans
    • Brown MS, Ye J, Rawson RB, Goldstein JL. 2000. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100:391-398.
    • (2000) Cell , vol.100 , pp. 391-398
    • Brown, M.S.1    Ye, J.2    Rawson, R.B.3    Goldstein, J.L.4
  • 183
    • 10044241602 scopus 로고    scopus 로고
    • RseP (YaeL), an Escherichia coli RIP protease, cleaves transmembrane sequences
    • DOI 10.1038/sj.emboj.7600449
    • Akiyama Y, Kanehara K, Ito K. 2004. RseP (YaeL), an Escherichia coli RIP protease, cleaves transmembrane sequences. EMBO J. 23:4434-442. (Pubitemid 39601968)
    • (2004) EMBO Journal , vol.23 , Issue.22 , pp. 4434-4442
    • Akiyama, Y.1    Kanehara, K.2    Ito, K.3
  • 184
    • 66249133368 scopus 로고    scopus 로고
    • How intramembrane proteases bury hydrolytic reactions in themembrane
    • Erez E, Fass D, Bibi E. 2009. How intramembrane proteases bury hydrolytic reactions in themembrane. Nature 459:371-378.
    • (2009) Nature , vol.459 , pp. 371-378
    • Erez, E.1    Fass, D.2    Bibi, E.3
  • 185
    • 26644441432 scopus 로고    scopus 로고
    • Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane
    • DOI 10.1021/bi051363k
    • Maegawa S, Ito K, Akiyama Y. 2005. Proteolytic action of Glp G, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochemistry 44:13543-552. (Pubitemid 41443681)
    • (2005) Biochemistry , vol.44 , Issue.41 , pp. 13543-13552
    • Maegawa, S.1    Ito, K.2    Akiyama, Y.3
  • 186
    • 73149105938 scopus 로고    scopus 로고
    • Cleavage of a multispanning membrane protein by an intramembrane serine protease
    • Erez E, Bibi E. 2009. Cleavage of a multispanning membrane protein by an intramembrane serine protease. Biochemistry 48:12314-322.
    • (2009) Biochemistry , vol.48 , pp. 12314-12322
    • Erez, E.1    Bibi, E.2
  • 187
    • 0035078316 scopus 로고    scopus 로고
    • Physiological basis for conservation of the signal recognition particle targeting pathway in Escherichia coli
    • DOI 10.1128/JB.183.7.2187-2197.2001
    • Bernstein KD, Hyndman JB. 2001. Physiological basis for conservation of the signal recognition particle targeting pathway in Escherichia coli. J. Bacteriol. 183:2187-197. (Pubitemid 32240386)
    • (2001) Journal of Bacteriology , vol.183 , Issue.7 , pp. 2187-2197
    • Bernstein, H.D.1    Hyndman, J.B.2
  • 188
    • 77950635752 scopus 로고    scopus 로고
    • Global change of gene expression and cell physiology in YidCdepleted Escherichia coli
    • Wang P, Kuhn A, Dalbey RE. 2010. Global change of gene expression and cell physiology in YidCdepleted Escherichia coli. J. Bacteriol. 192:2193-209.
    • (2010) J. Bacteriol. , vol.192 , pp. 2193-2209
    • Wang, P.1    Kuhn, A.2    Dalbey, R.E.3
  • 189
    • 0035985049 scopus 로고    scopus 로고
    • The Cpx stress response system of Escherichia coli senses plasma membrane proteins and controls HtpX, a membrane protease with a cytosolic active site
    • DOI 10.1046/j.1365-2443.2002.00554.x
    • Shimohata N, Chiba S, Saikawa N, Ito K, Akiyama Y. 2002. TheCpx stress response system of Escherichia coli senses plasma membrane proteins and controls Htp X, a membrane protease with a cytosolic active site. Genes Cells 7:653-62 (Pubitemid 34814757)
    • (2002) Genes to Cells , vol.7 , Issue.7 , pp. 653-662
    • Shimohata, N.1    Chiba, S.2    Saikawa, N.3    Ito, K.4    Akiyama, Y.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.