-
1
-
-
0036459716
-
On the concentration of eigenvalues of random symmetric matrices
-
N. Alon, M. Krivelevich, and V. H. Vu, On the concentration of eigenvalues of random symmetric matrices, Israel J Math 131 (2002), 259-267.
-
(2002)
Israel J Math
, vol.131
, pp. 259-267
-
-
Alon, N.1
Krivelevich, M.2
Vu, V.H.3
-
2
-
-
79959409062
-
-
Nodal domains on graphs-How to count them and why? In Analysis on graphs and its applications, Proceedings of the Symptom Pure Mathematics, American Mathematics Society, Providence, RI
-
R. Band, I. Oren, and U. Smilansky, Nodal domains on graphs-How to count them and why? In Analysis on graphs and its applications, Proceedings of the Symptom Pure Mathematics, American Mathematics Society, Vol. 77, Providence, RI, 2008, pp. 5-27.
-
(2008)
, vol.77
, pp. 5-27
-
-
Band, R.1
Oren, I.2
Smilansky, U.3
-
5
-
-
19644394100
-
Geometric diffusion as a tool for harmonic analysis and structure definition of data. Part i: Diffusion maps
-
R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. Zucker, Geometric diffusion as a tool for harmonic analysis and structure definition of data. Part i: Diffusion maps, Proc Natl Acad Sci USA 102 (2005), 7426-7431.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 7426-7431
-
-
Coifman, R.R.1
Lafon, S.2
Lee, A.B.3
Maggioni, M.4
Nadler, B.5
Warner, F.6
Zucker, S.7
-
6
-
-
19644366699
-
Geometric diffusion as a tool for harmonic analysis and structure definition of data. Part i: Multiscale methods
-
R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. Zucker, Geometric diffusion as a tool for harmonic analysis and structure definition of data. Part i: Multiscale methods, Proc Natl Acad Sci USA 102 (2005), 7432-7437.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 7432-7437
-
-
Coifman, R.R.1
Lafon, S.2
Lee, A.B.3
Maggioni, M.4
Nadler, B.5
Warner, F.6
Zucker, S.7
-
7
-
-
33751509641
-
Random symmetric matrices are almost surely nonsingular
-
K. P. Costello, T. Tao, and V. Vu, Random symmetric matrices are almost surely nonsingular, Duke Math J 135 (2006), 395-413.
-
(2006)
Duke Math J
, vol.135
, pp. 395-413
-
-
Costello, K.P.1
Tao, T.2
Vu, V.3
-
8
-
-
0035888167
-
Discrete nodal domain theorems
-
E. B. Davies, G. M. L. Gladwell, J. Leydold, and P. F. Stadler, Discrete nodal domain theorems, Linear Algebra Appl 336 (2001), 51-60.
-
(2001)
Linear Algebra Appl
, vol.336
, pp. 51-60
-
-
Davies, E.B.1
Gladwell, G.M.L.2
Leydold, J.3
Stadler, P.F.4
-
9
-
-
51249182622
-
The eigenvalues of random symmetric matrices
-
Z. Füredi and J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica 1 (1981), 233-241.
-
(1981)
Combinatorica
, vol.1
, pp. 233-241
-
-
Füredi, Z.1
Komlós, J.2
-
10
-
-
33749002225
-
Expander graphs and their applications
-
S. Hoory, N. Linial, and A. Wigderson, Expander graphs and their applications, Bull AMS 43 (2006), 439-561.
-
(2006)
Bull AMS
, vol.43
, pp. 439-561
-
-
Hoory, S.1
Linial, N.2
Wigderson, A.3
-
11
-
-
0036604770
-
Approximating the independence number and the chromatic number in expected polynomial time
-
M. Krivelevich and V. H. Vu, Approximating the independence number and the chromatic number in expected polynomial time, J Comb Optim 6 (2002), 143-155.
-
(2002)
J Comb Optim
, vol.6
, pp. 143-155
-
-
Krivelevich, M.1
Vu, V.H.2
-
12
-
-
18644382839
-
Smallest singular value of random matrices and geometry of random polytopes
-
A. E. Litvak, A. Pajor, M. Rudelson, and N. Tomczak-Jaegermann, Smallest singular value of random matrices and geometry of random polytopes, Adv Math 195 (2005), 491-523.
-
(2005)
Adv Math
, vol.195
, pp. 491-523
-
-
Litvak, A.E.1
Pajor, A.2
Rudelson, M.3
Tomczak-Jaegermann, N.4
-
13
-
-
29244449653
-
Euclidean embeddings in spaces of finite volume ratio via random matrices
-
A. E. Litvak, A. Pajor, M. Rudelson, N. Tomczak-Jaegermann, and R. Vershynin, Euclidean embeddings in spaces of finite volume ratio via random matrices, J Reine Angew Math 589 (2005), 1-19.
-
(2005)
J Reine Angew Math
, vol.589
, pp. 1-19
-
-
Litvak, A.E.1
Pajor, A.2
Rudelson, M.3
Tomczak-Jaegermann, N.4
Vershynin, R.5
-
15
-
-
84860606567
-
A note on analytic functions in the unit circle
-
R. Paley and A. Zygmund, A note on analytic functions in the unit circle, Proc Camb Phil Soc 28 (1932), 266-272.
-
(1932)
Proc Camb Phil Soc
, vol.28
, pp. 266-272
-
-
Paley, R.1
Zygmund, A.2
-
16
-
-
0000812783
-
Partitioning sparse matrices with eigenvectors of graphs
-
A. Pothen, H. D. Simon, and K.-P. Liou, Partitioning sparse matrices with eigenvectors of graphs, SIAM J Matrix Anal Appl 11 (1990), 430-452.
-
(1990)
SIAM J Matrix Anal Appl
, vol.11
, pp. 430-452
-
-
Pothen, A.1
Simon, H.D.2
Liou, K.-P.3
-
17
-
-
49649108303
-
Invertibility of random matrices: Norm of the inverse
-
M. Rudelson, Invertibility of random matrices: Norm of the inverse, Ann Math 168 (2008), 575-600.
-
(2008)
Ann Math
, vol.168
, pp. 575-600
-
-
Rudelson, M.1
-
18
-
-
41049114969
-
The littlewood-offord problem and invertibility of random matrices
-
M. Rudelson and R. Vershynin, The littlewood-offord problem and invertibility of random matrices, Adv Math 218 (2008), 600-633.
-
(2008)
Adv Math
, vol.218
, pp. 600-633
-
-
Rudelson, M.1
Vershynin, R.2
-
21
-
-
71849089047
-
Inverse Littlewood-Offord theorems and the condition number of random discrete matrices
-
T. Tao and V. Vu, Inverse Littlewood-Offord theorems and the condition number of random discrete matrices, Ann Math 169 (2009), 595-632.
-
(2009)
Ann Math
, vol.169
, pp. 595-632
-
-
Tao, T.1
Vu, V.2
-
22
-
-
79955148749
-
Random matrices: The distribution of the smallest singular values
-
ArXiv e-prints.
-
T. Tao and V. Vu, Random matrices: The distribution of the smallest singular values, ArXiv e-prints (2009).
-
(2009)
-
-
Tao, T.1
Vu, V.2
-
23
-
-
38049069417
-
Random discrete matrices
-
arXiv:math/0611321.
-
V. Vu, Random discrete matrices, arXiv:math/0611321 (2007).
-
(2007)
-
-
Vu, V.1
-
24
-
-
85139271755
-
-
Segmentation using eigenvectors: A unifying view, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
-
Y. Weiss, Segmentation using eigenvectors: A unifying view, In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 1999, pp. 520-527.
-
(1999)
, pp. 520-527
-
-
Weiss, Y.1
|