메뉴 건너뛰기




Volumn 6792 LNCS, Issue PART 2, 2011, Pages 9-16

Weakly supervised learning of foreground-background segmentation using masked RBMs

Author keywords

RBM; segmentation; weakly supervised learning

Indexed keywords

CLUTTERED IMAGES; FOREGROUND OBJECTS; LEARNING SCHEMES; RBM; RESTRICTED BOLTZMANN MACHINE; WEAKLY SUPERVISED LEARNING;

EID: 79959366395     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-21738-8_2     Document Type: Conference Paper
Times cited : (9)

References (13)
  • 1
    • 0013344078 scopus 로고    scopus 로고
    • Training Products of Experts by Minimizing Contrastive Divergence
    • Hinton, G.E.: Training Products of Experts by Minimizing Contrastive Divergence. Neural Computation 14(8), 1771-1800 (2002)
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 2
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Hinton, G.E., Osindero, S., Teh, Y.: A fast learning algorithm for deep belief nets. Neural Computation 18, 1527-1554 (2006)
    • (2006) Neural Computation , vol.18 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.3
  • 3
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • Lee, H., Gross, R., Ranganath, R., Ng, A.Y.: Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: ICML (2009)
    • (2009) ICML
    • Lee, H.1    Gross, R.2    Ranganath, R.3    Ng, A.Y.4
  • 4
    • 79951571992 scopus 로고    scopus 로고
    • Learning aGenerativeModel of Images by Factoring Appearance and Shape
    • Le Roux,N., Heess, N., Shotton, J.,Winn, J.: Learning aGenerativeModel of Images by Factoring Appearance and Shape. Neural Computation 23(3), 593-650 (2011)
    • (2011) Neural Computation , vol.23 , Issue.3 , pp. 593-650
    • Le Roux, N.1    Heess, N.2    Shotton, J.3    Winn, J.4
  • 6
    • 77955989954 scopus 로고    scopus 로고
    • Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines
    • Ranzato, M., Hinton, G.: Modeling Pixel Means and Covariances Using Factorized Third-Order Boltzmann Machines. In: CVPR (2010)
    • (2010) CVPR
    • Ranzato, M.1    Hinton, G.2
  • 9
    • 56449086223 scopus 로고    scopus 로고
    • Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient
    • Tieleman, T.: Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient. In: ICML (2008)
    • (2008) ICML
    • Tieleman, T.1
  • 11
    • 1842733191 scopus 로고    scopus 로고
    • Greedy Learning of Multiple Objects in Images using Robust Statistics and Factorial Learning
    • Williams, C.K.I., Titsias, M.K.: Greedy Learning of Multiple Objects in Images using Robust Statistics and Factorial Learning. Neural Comp. 16(5), 1039-1062 (2004)
    • (2004) Neural Comp. , vol.16 , Issue.5 , pp. 1039-1062
    • Williams, C.K.I.1    Titsias, M.K.2
  • 12
    • 78650470106 scopus 로고    scopus 로고
    • Similarity scores based on background samples
    • Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009. Springer, Heidelberg
    • Wolf, L., Hassner, T., Taigman, Y.: Similarity scores based on background samples. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009. LNCS, vol. 5995, pp. 88-97. Springer, Heidelberg (2010)
    • (2010) LNCS , vol.5995 , pp. 88-97
    • Wolf, L.1    Hassner, T.2    Taigman, Y.3
  • 13
    • 85006688662 scopus 로고    scopus 로고
    • Suppl. Material, http://homepages.inf.ed.ac.uk/s0677090/papers/ icannSuppl.pdf
    • Suppl. Material


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.