-
1
-
-
0030589781
-
Convergence results in a well-known delayed predator-prey system
-
DOI 10.1006/jmaa.1996.0471
-
E. Beretta, and Y. Kuang Convergence results in a well-known delayed predator-prey system J. Math. Anal. Appl. 204 1996 840 853 (Pubitemid 126167819)
-
(1996)
Journal of Mathematical Analysis and Applications
, vol.204
, Issue.3
, pp. 840-853
-
-
Beretta, E.1
Kuang, Y.2
-
2
-
-
0017431525
-
Periodic time-dependent predator-prey systems
-
J.M. Cushing Periodic time-dependent predator-prey systems SIAMJ. Appl. Math. 32 1997 82 95
-
(1997)
SIAMJ. Appl. Math.
, vol.32
, pp. 82-95
-
-
Cushing, J.M.1
-
3
-
-
0035866130
-
Stability and Bifurcation for a Delayed Predator-Prey Model and the Effect of Diffusion
-
DOI 10.1006/jmaa.2000.7182, PII S0022247X00971828
-
T. Faria Stability and bifurcation for a delay predator-prey model and the effect of diffusion J. Math. Anal. Appl. 254 2001 433 463 (Pubitemid 33380901)
-
(2001)
Journal of Mathematical Analysis and Applications
, vol.254
, Issue.2
, pp. 433-463
-
-
Faria, T.1
-
7
-
-
2942638131
-
Stability and Hopf bifurcation in a competitive Lotka-Volterra system with two delays
-
Y. Song, M. Han, and Y. Peng Stability and Hopf bifurcation in a competitive Lotka-Volterra system with two delays Chaos Solitons Fract. 22 2004 1139 1148
-
(2004)
Chaos Solitons Fract.
, vol.22
, pp. 1139-1148
-
-
Song, Y.1
Han, M.2
Peng, Y.3
-
8
-
-
10144242643
-
Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system
-
DOI 10.1016/j.jmaa.2004.06.056, PII S0022247X04005700
-
Y. Song, and J. Wei Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system J. Math. Anal. Appl. 301 2005 1 21 (Pubitemid 39615204)
-
(2005)
Journal of Mathematical Analysis and Applications
, vol.301
, Issue.1
, pp. 1-21
-
-
Song, Y.1
Wei, J.2
-
10
-
-
33847324896
-
Bifurcation and global periodic solutions in a delayed facultative mutualism system
-
X. Yan, and W. Li Bifurcation and global periodic solutions in a delayed facultative mutualism system Physica D 227 2007 51 69
-
(2007)
Physica D
, vol.227
, pp. 51-69
-
-
Yan, X.1
Li, W.2
-
11
-
-
33744545227
-
Hopf bifurcation and global periodic solutions in a delayed predator-prey system
-
DOI 10.1016/j.amc.2005.11.020, PII S0096300305009227
-
X. Yan, and W. Li Hopf bifurcation and global periodic solutions in a delayed predator-prey system Appl. Math. Comput. 177 2006 427 445 (Pubitemid 43815543)
-
(2006)
Applied Mathematics and Computation
, vol.177
, Issue.1
, pp. 427-445
-
-
Yan, X.-P.1
Li, W.-T.2
-
12
-
-
35248878133
-
Hopf bifurcation in a delayed Lokta-Volterra predator-prey system
-
DOI 10.1016/j.nonrwa.2006.09.007, PII S1468121806001143
-
X. Yan, and C. Zhang Hopf bifurcation in a delayed Lotka-Volterra predator-prey system Nonlinar Anal. 9 2008 114 127 (Pubitemid 47562890)
-
(2008)
Nonlinear Analysis: Real World Applications
, vol.9
, Issue.1
, pp. 114-127
-
-
Yan, X.-P.1
Zhang, C.-H.2
-
13
-
-
0031126691
-
Global existence of periodic solutions in a class of delayed gause-type predator-prey systems
-
T. Zhao, Y. Kuang, and H.L. Smith Global existence of periodic solutions in a class of delayed Gause-type predator-prey system Nonlinar Anal. 28 1997 1373 1394 (Pubitemid 127425178)
-
(1997)
Nonlinear Analysis, Theory, Methods and Applications
, vol.28
, Issue.8
, pp. 1373-1394
-
-
Zhao, T.1
Kuang, Y.2
Smith, H.L.3
-
14
-
-
0037299441
-
Global attractivity in a competitive system with feedback controls
-
K. Gopalsamy, and P. Weng Global attractivity in a competitive system with feedback controls Comput. Math. Appl. 45 2003 665 676
-
(2003)
Comput. Math. Appl.
, vol.45
, pp. 665-676
-
-
Gopalsamy, K.1
Weng, P.2
-
15
-
-
0036537614
-
The necessary and sufficient condition for global stability of a Lotka-Volterra cooperative or competitive system with delays
-
Y. Saito The necessary and sufficient condition for global stability of a Lotka-Volterra cooperative or competitive system with delays J. Math. Anal. Appl. 268 2002 109 124
-
(2002)
J. Math. Anal. Appl.
, vol.268
, pp. 109-124
-
-
Saito, Y.1
-
16
-
-
2942664911
-
Uniform persistence of n-dimensional Lotka-Volterra competitive systems with finite delay
-
Z. Jin, and Z. Ma Uniform persistence of n-dimensional Lotka-Volterra competitive systems with finite delay Adv. Top. Biomath. 1998 91 95
-
(1998)
Adv. Top. Biomath.
, pp. 91-95
-
-
Jin, Z.1
Ma, Z.2
-
17
-
-
0000239001
-
Permanence and global attractivity for competitive Lotka-Volterra system with delay
-
Z. Lu, and Y. Takeuchi Permanence and global attractivity for competitive Lotka-Volterra system with delay Nonlinear Anal. TMA 22 1994 847 856
-
(1994)
Nonlinear Anal. TMA
, vol.22
, pp. 847-856
-
-
Lu, Z.1
Takeuchi, Y.2
-
18
-
-
2942682052
-
Global attractivity of non-autonomous Lotka-Volterra competitive system without instantaneous negative feedback
-
X.H. Tang, and X.F. Zou Global attractivity of non-autonomous Lotka-Volterra competitive system without instantaneous negative feedback J. Differ. Equ. 19 2003 2502 2535
-
(2003)
J. Differ. Equ.
, vol.19
, pp. 2502-2535
-
-
Tang, X.H.1
Zou, X.F.2
-
19
-
-
0037059101
-
3/2-type criteria for global attractivity of Lotka-Volterra competition system without instantaneous negative feedbacks
-
DOI 10.1016/S0022-0396(02)00011-6, PII S0022039602000116
-
X.H. Tang, and X.F. Zou 3 2 -type criteria for global attractivity of Lotka-Volterra competitive system without instantaneous negative feedback J. Differ. Equ. 186 2002 420 439 (Pubitemid 36006077)
-
(2002)
Journal of Differential Equations
, vol.186
, Issue.2
, pp. 420-439
-
-
Tang, X.H.1
Zou, X.2
|