메뉴 건너뛰기




Volumn , Issue , 2011, Pages 223-226

Visualizing collaboration and influence in the open-source software community

Author keywords

collaboration; data exploration; geoscatter; github; mapping; open source; social graph; visualization

Indexed keywords

COLLABORATION; DATA EXPLORATION; GEOSCATTER; GITHUB; OPEN SOURCES; SOCIAL GRAPHS;

EID: 79959252827     PISSN: 02705257     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1985441.1985476     Document Type: Conference Paper
Times cited : (41)

References (20)
  • 1
    • 79959252774 scopus 로고    scopus 로고
    • GitHub API. http://develop.github.com.
    • GitHub API
  • 3
    • 0030127609 scopus 로고    scopus 로고
    • Software visualization in the large
    • T. Ball and S. Eick. Software visualization in the large. Computer, 29(4):33-43, 2002.
    • (2002) Computer , vol.29 , Issue.4 , pp. 33-43
    • Ball, T.1    Eick, S.2
  • 12
    • 56249115176 scopus 로고    scopus 로고
    • Geographic origin of libre software developers
    • J. Gonzalez-Barahona et al. Geographic origin of libre software developers. Information Economics and Policy, 20(4):356-363, 2008.
    • (2008) Information Economics and Policy , vol.20 , Issue.4 , pp. 356-363
    • Gonzalez-Barahona, J.1
  • 14
    • 57049091549 scopus 로고    scopus 로고
    • What do large commits tell us?: A taxonomical study of large commits
    • ACM
    • A. Hindle, D. German, and R. Holt. What do large commits tell us?: a taxonomical study of large commits. In Mining software repositories, pages 99-108. ACM, 2008.
    • (2008) Mining Software Repositories , pp. 99-108
    • Hindle, A.1    German, D.2    Holt, R.3
  • 19
    • 18044387569 scopus 로고    scopus 로고
    • Studying software evolution information by visualizing the change history
    • F. Van Rysselberghe and S. Demeyer. Studying software evolution information by visualizing the change history. Software Maintenance, 2004.
    • (2004) Software Maintenance
    • Van Rysselberghe, F.1    Demeyer, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.