메뉴 건너뛰기




Volumn , Issue , 2010, Pages 450-457

Keeping the trainee on track

Author keywords

[No Author keywords available]

Indexed keywords

AGENT ADAPTATION; CENTRALIZED APPROACHES; COURSES OF ACTIONS; GAME DESIGN; HUMAN EXPERT; ITS EVALUATION; SERIOUS GAMES; SKILL LEVELS; STORYLINES; TRAINING APPLICATIONS; USER LEVELS;

EID: 79959197945     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ITW.2010.5593322     Document Type: Conference Paper
Times cited : (9)

References (25)
  • 1
    • 81055147996 scopus 로고    scopus 로고
    • Dynamic game balancing: An evaluation of user satisfaction
    • J. E. Laird and J. Schaeffer, editors The AAAI Press
    • G. Andrade, G. Ramalho, A. S. Gomes, and V. Corruble. Dynamic game balancing: An evaluation of user satisfaction. In J. E. Laird and J. Schaeffer, editors, AIIDE, pages 3-8. The AAAI Press, 2006.
    • (2006) AIIDE , pp. 3-8
    • Andrade, G.1    Ramalho, G.2    Gomes, A.S.3    Corruble, V.4
  • 8
    • 4544285290 scopus 로고    scopus 로고
    • A Model for Organizational Interaction: Based on Agents, founded in Logic
    • series
    • V. Dignum. A Model for Organizational Interaction: based on Agents, founded in Logic. SIKS Dissertation, series, 2004.
    • (2004) SIKS Dissertation
    • Dignum, V.1
  • 10
    • 72449160450 scopus 로고    scopus 로고
    • AI for Dynamic Difficulty Adjustment in Games
    • Nineteenth National Conference on Artificial Intelligence (AAAI'04)
    • R. Hunicke and V. Chapman. AI for Dynamic Difficulty Adjustment in Games. Proceedings of the Challenges in Game AI Workshop, Nineteenth National Conference on Artificial Intelligence (AAAI'04).
    • Proceedings of the Challenges in Game AI Workshop
    • Hunicke, R.1    Chapman, V.2
  • 11
    • 32144439231 scopus 로고    scopus 로고
    • AI for dynamic difficulty adjustment in games
    • Challenges in Game Artificial Intelligence - Papers from the AAAI-04 Workshop, Technical Report
    • R. Hunicke and V. Chapman. AI for dynamic difficulty adjustment in games. In Challenges in Game Artificial Intelligence AAAI Workshop, pages 91-96, 2004. (Pubitemid 43208122)
    • (2004) AAAI Workshop - Technical Report , vol.WS0404 , pp. 91-96
    • Hunicke, R.1    Chapman, V.2
  • 13
    • 84906846755 scopus 로고    scopus 로고
    • AI characters and directors for interactive computer games
    • B. Magerko, J. Laird, M. Assanie, A. Kerfoot, and D. Stokes. AI characters and directors for interactive computer games. Ann Arbor, 1001:48109-2110.
    • Ann Arbor , vol.1001 , pp. 48109-2110
    • Magerko, B.1    Laird, J.2    Assanie, M.3    Kerfoot, A.4    Stokes, D.5
  • 14
    • 0002569675 scopus 로고    scopus 로고
    • Personality Parameters and Programs
    • Creating Personalities for Synthetic Actors: Towards Autonomous Personality Agents
    • D. Moffat. Personality parameters and programs. In Creating Personalities for Synthetic Actors, Towards Autonomous Personality Agents, pages 120-165, London, UK, 1997. Springer-Verlag. (Pubitemid 127051528)
    • (1997) LECTURE NOTES IN COMPUTER SCIENCE , Issue.1195 , pp. 120-165
    • Moffat, D.1
  • 15
    • 26444601262 scopus 로고    scopus 로고
    • Cooperative multi-agent learning: The state of the art
    • DOI 10.1007/s10458-005-2631-2
    • L. Panait and S. Luke. Cooperative multi-agent learning: The state of the art. Autonomous Agents and Multi-Agent Systems, 11(3):387-434, 2005. (Pubitemid 41425094)
    • (2005) Autonomous Agents and Multi-Agent Systems , vol.11 , Issue.3 , pp. 387-434
    • Panait, L.1    Luke, S.2
  • 18
    • 0036467861 scopus 로고    scopus 로고
    • Algorithm for optimal winner determination in combinatorial auctions
    • DOI 10.1016/S0004-3702(01)00159-X, PII S000437020100159X
    • T. Sandholm. Algorithm for optimal winner determination in combinatorial auctions. Artificial Intelligence, 135(1-2):1-54, 2002. (Pubitemid 34110153)
    • (2002) Artificial Intelligence , vol.135 , Issue.1-2 , pp. 1-54
    • Sandholm, T.1
  • 19
    • 29344432238 scopus 로고    scopus 로고
    • The DEFACTO system: Training tool for incident commanders
    • Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
    • N. Schurr, J. Marecki, J. P. Lewis, M. Tambe, and P. Scerri. The DEFACTO system: Training tool for incident commanders. In M. M. Veloso and S. Kambhampati, editors, AAAI, pages 1555-1562. AAAI Press/The MIT Press, 2005. (Pubitemid 43006652)
    • (2005) Proceedings of the National Conference on Artificial Intelligence , vol.3 , pp. 1555-1562
    • Schurr, N.1    Marecki, J.2    Lewis, J.P.3    Tambe, M.4    Scerri, P.5
  • 20
  • 21
    • 33744767417 scopus 로고    scopus 로고
    • Human behavior models for agents in simulators and games: Part II: Gamebot engineering with PMFserv
    • DOI 10.1162/pres.2006.15.2.163
    • B. Silverman, G. Bharathy, K. O'Brien, and J. Cornwell. Human behavior models for agents in simulators and games: part II: gamebot engineering with PMFserv. Presence: Teleoperators and Virtual Environments, 15(2):163-185, 2006. (Pubitemid 43823773)
    • (2006) Presence: Teleoperators and Virtual Environments , vol.15 , Issue.2 , pp. 163-185
    • Silverman, B.G.1    Bharathy, G.2    O'Brien, K.3    Cornwell, J.4
  • 23
    • 33744791741 scopus 로고    scopus 로고
    • Adaptive game AI with dynamic scripting
    • DOI 10.1007/s10994-006-6205-6, Machine Learning and Games
    • P. Spronck, M. Ponsen, I. Sprinkhuizen-Kuyper, and E. Postma. Adaptive game AI with dynamic scripting. Machine Learning, 63(3):217-248, 2006. (Pubitemid 43839319)
    • (2006) Machine Learning , vol.63 , Issue.3 , pp. 217-248
    • Spronck, P.1    Ponsen, M.2    Sprinkhuizen-Kuyper, I.3    Postma, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.