-
1
-
-
0026498891
-
Population cycles of mammals: evidence for a ratio-dependent predatorprey hypothesis
-
AKÇAKAYA, H. R. (1992) Population cycles of mammals: evidence for a ratio-dependent predatorprey hypothesis. Ecol. Monogr., 62, 119-142.
-
(1992)
Ecol. Monogr.
, vol.62
, pp. 119-142
-
-
Akçakaya, H.R.1
-
4
-
-
0242364789
-
Boundedness and global stability for a predatorprey model with modified LeslieGower and Holling-type II schemes
-
AZIZ-ALAOUI, M. A. & DAHER-OKIYE, M. (2003) Boundedness and global stability for a predatorprey model with modified LeslieGower and Holling-type II schemes. Appl. Math. Lett., 16, 1069-1075.
-
(2003)
Appl. Math. Lett.
, vol.16
, pp. 1069-1075
-
-
Aziz-Alaoui, M.A.1
Daher-Okiye, M.2
-
5
-
-
14844315022
-
Ratio-dependent predatorprey model: effect of environmental fluctuation and stability
-
BANDYOPADHYAY, M. & CHATTOPADHYAY, J. (2005) Ratio-dependent predatorprey model: effect of environmental fluctuation and stability. Nonlinearity, 18, 913-936.
-
(2005)
Nonlinearity
, vol.18
, pp. 913-936
-
-
Bandyopadhyay, M.1
Chattopadhyay, J.2
-
6
-
-
70350622695
-
Self-replication of spatial patterns in a ratio-dependent predator-prey model
-
BANERJEE, M. (2010) Self-replication of spatial patterns in a ratio-dependent predator-prey model. Math. Comput. Model., 51, 44-52.
-
(2010)
Math. Comput. Model.
, vol.51
, pp. 44-52
-
-
Banerjee, M.1
-
7
-
-
85028093389
-
Self-organized spatial patterns and chaos in a ratio-dependent predatorprey system
-
(in press), doi: 10.1007/s12080-010-0073-1
-
BANERJEE, M. & PETROVSKII, S. (2010) Self-organized spatial patterns and chaos in a ratio-dependent predatorprey system. Theor. Ecol. (in press), doi: 10.1007/s12080-010-0073-1.
-
(2010)
Theor. Ecol.
-
-
Banerjee, M.1
Petrovskii, S.2
-
8
-
-
38249002914
-
Pattern formation in reaction diffusion models with spatially inhomogeneous diffusion coefficients
-
BENSON, D. L., MAINI, P. K. & SHERRATT, J. (1993b) Pattern formation in reaction diffusion models with spatially inhomogeneous diffusion coefficients. Math. Comput. Model., 17, 29-34.
-
(1993)
Math. Comput. Model.
, vol.17
, pp. 29-34
-
-
Benson, D.L.1
Maini, P.K.2
Sherratt, J.3
-
9
-
-
0000255576
-
Diffusion driven instability in an inhomogeneous domain
-
BENSON, D. L., SHERRATT, J. & MAINI, P. K. (1993a) Diffusion driven instability in an inhomogeneous domain. Bull. Math. Biol., 55, 365-384.
-
(1993)
Bull. Math. Biol.
, vol.55
, pp. 365-384
-
-
Benson, D.L.1
Sherratt, J.2
Maini, P.K.3
-
12
-
-
28244492039
-
Global asymptotic stability of a ratio-dependent predator-prey system with diffusion
-
FAN, Y. H. & LI, W. T. (2006) Global asymptotic stability of a ratio-dependent predator-prey system with diffusion. J. Comput. Appl. Math., 188, 205-227.
-
(2006)
J. Comput. Appl. Math.
, vol.188
, pp. 205-227
-
-
Fan, Y.H.1
Li, W.T.2
-
13
-
-
33947514402
-
Finite-difference schemes for reaction diffusion equations modeling predator prey interactions in MATLAB
-
GARVIE, M. R. (2007) Finite-difference schemes for reaction diffusion equations modeling predator prey interactions in MATLAB. Bull. Math. Biol., 69, 931-956.
-
(2007)
Bull. Math. Biol.
, vol.69
, pp. 931-956
-
-
Garvie, M.R.1
-
14
-
-
0038652547
-
Limit cycles in the HollingTanner model
-
GASULL, A., KOOIJ, R. E. & TORREGROSA, J. (1997) Limit cycles in the HollingTanner model. Publ. Math., 41, 149-167.
-
(1997)
Publ. Math.
, vol.41
, pp. 149-167
-
-
Gasull, A.1
Kooij, R.E.2
Torregrosa, J.3
-
16
-
-
0031662774
-
Circle and spiral: population persistence in a spatially explicit predator-prey model
-
GURNEY, W. S. C., VEITH, A. R., CRUICHSHANK, I. & MCGEACHIN, G. (1998) Circle and spiral: population persistence in a spatially explicit predator-prey model. Ecology, 79, 2516-2530.
-
(1998)
Ecology
, vol.79
, pp. 2516-2530
-
-
Gurney, W.S.C.1
Veith, A.R.2
Cruichshank, I.3
Mcgeachin, G.4
-
17
-
-
50149106818
-
A ratio-dependent prey-predator model with logistic growth for the predator population
-
Cambridge, UK, doi: 10.1109/UKSIM.2008.1
-
HAQUE, M. & LI, B. L. (2008) A ratio-dependent prey-predator model with logistic growth for the predator population. Proceedings of the 10th International Conference on Computer Modeling and Simulation, Cambridge, UK, pp. 210-215, doi: 10.1109/UKSIM.2008.1.
-
(2008)
Proceedings of the 10th International Conference on Computer Modeling and Simulation
, pp. 210-215
-
-
Haque, M.1
Li, B.L.2
-
18
-
-
0029325665
-
Global stability for a class of predatorprey systems
-
HSU, S. B. & HWANG, T. W. (1995) Global stability for a class of predatorprey systems. SIAM J. Appl. Math., 55, 763-783.
-
(1995)
SIAM J. Appl. Math.
, vol.55
, pp. 763-783
-
-
Hsu, S.B.1
Hwang, T.W.2
-
20
-
-
0035427292
-
A Lyapunov function for LeslieGower predatorprey model
-
KOROBEINIKOV, A. (2001) A Lyapunov function for LeslieGower predatorprey model. Appl. Math. Lett., 14, 697699.
-
(2001)
Appl. Math. Lett.
, vol.14
, pp. 697699
-
-
Korobeinikov, A.1
-
21
-
-
28844497790
-
A numerical study of modelling in mathematical biology
-
Swinburne University of Technology, Melbourne, Australia
-
KOZLOVA, I. (2002) A numerical study of modelling in mathematical biology. Ph.D. Thesis, Swinburne University of Technology, Melbourne, Australia.
-
(2002)
Ph.D. Thesis
-
-
Kozlova, I.1
-
22
-
-
28844440423
-
Two-spotted spider mite predator-prey model
-
KOZLOVA, I., SINGH, M., EASTON, A. & RIDLAND, P. (2005) Two-spotted spider mite predator-prey model. Math. Comput. Model., 42, 1287-1298.
-
(2005)
Math. Comput. Model.
, vol.42
, pp. 1287-1298
-
-
Kozlova, I.1
Singh, M.2
Easton, A.3
Ridland, P.4
-
24
-
-
0001120901
-
The properties of a stochastic model for the predatorprey type of interaction between two species
-
LESLIE, P. H. & GOWER, J. C. (1960) The properties of a stochastic model for the predatorprey type of interaction between two species. Biometrika, 47, 219-234.
-
(1960)
Biometrika
, vol.47
, pp. 219-234
-
-
Leslie, P.H.1
Gower, J.C.2
-
25
-
-
34250658146
-
Qualitative analysis of a ratio-dependent HollingTanner model
-
LIANG, Z. & PAN, H. (2007) Qualitative analysis of a ratio-dependent HollingTanner model. J. Math. Anal. Appl., 334, 954-964.
-
(2007)
J. Math. Anal. Appl.
, vol.334
, pp. 954-964
-
-
Liang, Z.1
Pan, H.2
-
26
-
-
0000933807
-
Pattern formation in reaction diffusion models with spatially inhomogeneous diffusion coefficients
-
MAINI, P. K., BENSON, D. L. & SHERRATT, J. A. (1992) Pattern formation in reaction diffusion models with spatially inhomogeneous diffusion coefficients. IMA J. Math. Appl. Med. Biol., 9, 197-213.
-
(1992)
IMA J. Math. Appl. Med. Biol.
, vol.9
, pp. 197-213
-
-
Maini, P.K.1
Benson, D.L.2
Sherratt, J.A.3
-
28
-
-
0036733930
-
Spatio-temporal complexity of plankton and fish dynamics in simple model ecosystems
-
MEDVINSKY, A. B., PETROVSKII, S. V., TIKHONOVA, I. A., MALCHOW, H. & LI, B. L. (2002) Spatio-temporal complexity of plankton and fish dynamics in simple model ecosystems. SIAM Rev., 44, 311-370.
-
(2002)
SIAM Rev
, vol.44
, pp. 311-370
-
-
Medvinsky, A.B.1
Petrovskii, S.V.2
Tikhonova, I.A.3
Malchow, H.4
Li, B.L.5
-
34
-
-
34547885464
-
Instability and pattern formation in reaction-diffusion systems: a higher order analysis
-
RIAZ, S. S., SHARMA, R., BHATTACHARYA, S. P. & RAY, D. S. (2007) Instability and pattern formation in reaction-diffusion systems: a higher order analysis. J. Chem. Phys., 126, 064503.
-
(2007)
J. Chem. Phys.
, vol.126
, pp. 064503
-
-
Riaz, S.S.1
Sharma, R.2
Bhattacharya, S.P.3
Ray, D.S.4
-
36
-
-
67349268797
-
Dynamical analysis of a delayed ratio-dependent HollingTanner predatorprey model
-
SAHA, T. & CHAKRABARTI, C. G. (2009) Dynamical analysis of a delayed ratio-dependent HollingTanner predatorprey model. J. Math. Anal. Appl., 358, 389-402.
-
(2009)
J. Math. Anal. Appl.
, vol.358
, pp. 389-402
-
-
Saha, T.1
Chakrabarti, C.G.2
-
37
-
-
0015442349
-
Dissipative structure: an explanation and an ecological example
-
SEGEL, L. A. & JACKSON, J. L. (1972) Dissipative structure: an explanation and an ecological example. J. Theo. Biol., 37, 545-559.
-
(1972)
J. Theo. Biol.
, vol.37
, pp. 545-559
-
-
Segel, L.A.1
Jackson, J.L.2
-
38
-
-
0345281459
-
Turing bifurcations with a temporally varying diffusion coefficient
-
SHERRATT, J. A. (1995a) Turing bifurcations with a temporally varying diffusion coefficient. J. Math. Biol., 33, 295-308.
-
(1995)
J. Math. Biol.
, vol.33
, pp. 295-308
-
-
Sherratt, J.A.1
-
39
-
-
84974315649
-
Diffusion-driven instability in oscillating environments
-
SHERRATT, J. A. (1995b) Diffusion-driven instability in oscillating environments. Eur. J. Appl. Math., 6, 355-372.
-
(1995)
Eur. J. Appl. Math.
, vol.6
, pp. 355-372
-
-
Sherratt, J.A.1
-
41
-
-
0002011401
-
The chemical basis of morphogenesis
-
TURING, A. M. (1952) The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, 237, 37-72.
-
(1952)
Philos. Trans. R. Soc. Lond. B
, vol.237
, pp. 37-72
-
-
Turing, A.M.1
-
42
-
-
34347224051
-
Spatiotemporal complexity of a ratio-dependent predator-prey system
-
WANG, W., LIU, Q. X. & JIN, Z. (2007) Spatiotemporal complexity of a ratio-dependent predator-prey system. Phys. Rev. E, 75, 051913.
-
(2007)
Phys. Rev. E
, vol.75
, pp. 051913
-
-
Wang, W.1
Liu, Q.X.2
Jin, Z.3
-
43
-
-
38649108825
-
Chaos and Hopf bifurcation of a hybrid ratio-dependent three species food chain
-
WANG, F. & PANG, G. (2008) Chaos and Hopf bifurcation of a hybrid ratio-dependent three species food chain. Chaos Solitons Fractals, 36, 1366-1376.
-
(2008)
Chaos Solitons Fractals
, vol.36
, pp. 1366-1376
-
-
Wang, F.1
Pang, G.2
-
44
-
-
0035464834
-
Global dynamics of a ratio-dependent predatorprey system
-
XIAO, D. & RUAN, S. (2001) Global dynamics of a ratio-dependent predatorprey system. J. Math. Biol., 43, 268-290.
-
(2001)
J. Math. Biol.
, vol.43
, pp. 268-290
-
-
Xiao, D.1
Ruan, S.2
|