메뉴 건너뛰기




Volumn 1, Issue , 2010, Pages 252-256

Forecast of heat demand according the Box-Jenkins methodology for specific locality

Author keywords

Box Jenkins; Control algorithms; District heating control; Prediction; Time series analysis

Indexed keywords

BOX-JENKINS; BOX-JENKINS METHODOLOGY; CONTROL LEVEL; ECONOMIC CONSIDERATIONS; ENERGY COMPANIES; FORECAST MODEL; HEAT DEMAND PREDICTION; HEAT DEMANDS; HEAT PRODUCTION; INDEPENDENT COMPONENTS; LONG TERM PLANNING; OPTIMIZATION ROUTINE; OUTDOOR TEMPERATURE; SOCIAL COMPONENTS; TIME DEPENDENCE;

EID: 79958763451     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (7)
  • 5
    • 0036869810 scopus 로고    scopus 로고
    • Simple model for prediction of loads in district - heating systems
    • DOI 10.1016/S0306-2619(02)00078-8, PII S0306261902000788
    • DOTZAUER, Erik. Simple model for prediction of loads in district-heating systems. Applied Energy. November-December 2002, Volume 73, Issues 3-4, s. 277-284. ISSN 0306-2619. (Pubitemid 36049241)
    • (2002) Applied Energy , vol.73 , Issue.3-4 , pp. 277-284
    • Dotzauer, E.1
  • 6
    • 0035248045 scopus 로고    scopus 로고
    • Neural networks for short-term load forecasting : A review and evaluation
    • February. ISSN 0885-8950
    • HIPPERT, H.S.; PEDREIRA, C.E.; SOUZA, R.C. Neural networks for short-term load forecasting : a review and evaluation. IEEE Transactions on Power Systems. February 2001, Volume 16, Issue 1, s. 45-55. ISSN 0885-8950.
    • (2001) IEEE Transactions on Power Systems , vol.16 , Issue.1 , pp. 45-55
    • Hippert, H.S.1    Pedreira, C.E.2    Souza, R.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.