-
1
-
-
0042996193
-
Optimal Bayesian design for a logistic regression model: Geometric and algebraic approaches
-
(Edited by S. Ghosh), Dekker, New York
-
Agin, M. and Chaloner, K. (1999). Optimal Bayesian design for a logistic regression model: geometric and algebraic approaches. Multivariate Analysis, Design of Experiments and Survey Sampling (Edited by S. Ghosh), 609-624. Dekker, New York.
-
(1999)
Multivariate Analysis, Design of Experiments and Survey Sampling
, pp. 609-624
-
-
Agin, M.1
Chaloner, K.2
-
3
-
-
33745653711
-
Geometric construction of optimal designs for dose-reponse models with two parameters
-
Biedermann, S., Dette, H. and Zhu, W. (2006). Geometric construction of optimal designs for dose-reponse models with two parameters. J. Amer. Statist. Assoc. 101, 747-759.
-
(2006)
J. Amer. Statist. Assoc.
, vol.101
, pp. 747-759
-
-
Biedermann, S.1
Dette, H.2
Zhu, W.3
-
4
-
-
0001558095
-
E-optimal designs for linear and nonlinear models with two parameters
-
Dette, H. and Haines, L. M. (1994). E-optimal designs for linear and nonlinear models with two parameters. Biometrika 81, 739-754.
-
(1994)
Biometrika
, vol.81
, pp. 739-754
-
-
Dette, H.1
Haines, L.M.2
-
5
-
-
49649123010
-
Two-level experiments for binary response data
-
Dorta-Guerra, R., Gonzalez-Davina, E. and Ginebra, J. (2008). Two-level experiments for binary response data. Comput. Statist. Data Anal. 53, 196-208.
-
(2008)
Comput. Statist. Data Anal.
, vol.53
, pp. 196-208
-
-
Dorta-Guerra, R.1
Gonzalez-Davina, E.2
Ginebra, J.3
-
6
-
-
33845270220
-
Robust experimental design for multivariate generalized linear models
-
DOI 10.1198/004017006000000318
-
Dror, H. and Steinberg, D. (2006). Robust experimental design for multivariate generalized linear models. Technometrics 48, 520-529. (Pubitemid 44865393)
-
(2006)
Technometrics
, vol.48
, Issue.4
, pp. 520-529
-
-
Dror, H.A.1
Steinberg, D.M.2
-
7
-
-
42349108316
-
Sequential experimental designs for generalized linear models
-
Dror, H. and Steinberg, D. (2008). Sequential experimental designs for generalized linear models. J. Amer. Statist. Assoc. 103, 288-298.
-
(2008)
J. Amer. Statist. Assoc.
, vol.103
, pp. 288-298
-
-
Dror, H.1
Steinberg, D.2
-
8
-
-
0001049212
-
Optimum allocation in linear regression theory
-
Elfving, G. (1952). Optimum allocation in linear regression theory. Ann. Math. Statist. 23, 255-262.
-
(1952)
Ann. Math. Statist.
, vol.23
, pp. 255-262
-
-
Elfving, G.1
-
9
-
-
0000251072
-
The use of a canonical form in the construction of locally optimal designs for non-linear problems
-
Ford, I., Torsney, B. and Wu, C. F. J. (1992). The use of a canonical form in the construction of locally optimal designs for non-linear problems. J. Roy. Statist. Soc. Ser. B 54, 569-583.
-
(1992)
J. Roy. Statist. Soc. Ser. B
, vol.54
, pp. 569-583
-
-
Ford, I.1
Torsney, B.2
Wu, C.F.J.3
-
10
-
-
84858708804
-
-
(Edited by J. L. LopezFidalgo, J. M. RodriguezDiaz and B. Torsney)
-
Haines, L. M., Kabera, M. G., Ndlovu, P. and O'Brien, T. E. (2007). D-optimal designs for logistic regression in two variables. mODa 8 - Advances in Model-Oriented Design and Analysis (Edited by J. L. LopezFidalgo, J. M. RodriguezDiaz and B. Torsney), 91-98.
-
(2007)
D-optimal Designs for Logistic Regression in two Variables. mODa 8 - Advances in Model-Oriented Design and Analysis
, pp. 91-98
-
-
Haines, L.M.1
Kabera, M.G.2
Ndlovu, P.3
O'Brien, T.E.4
-
11
-
-
33846692630
-
Design issues for generalized linear models: A review
-
Khuri, A. I., Mukherjee, B., Sinha, B. K. and Ghosh, M. (2006). Design issues for generalized linear models: A review. Statist. Sci. 21, 376-399.
-
(2006)
Statist. Sci.
, vol.21
, pp. 376-399
-
-
Khuri, A.I.1
Mukherjee, B.2
Sinha, B.K.3
Ghosh, M.4
-
12
-
-
34547202625
-
Construction of marginally and conditionally restricted designs using multiplicative algorithms
-
DOI 10.1016/j.csda.2007.03.025, PII S0167947307001387
-
Martin-Martin, R., Torsney, B. and Lopez-Fidalgo, J. (2007). Construction of marginally and conditionally restricted designs using multiplicative algorithms. Comput. Statist. Data Anal. 12, 5547-5561. (Pubitemid 47126048)
-
(2007)
Computational Statistics and Data Analysis
, vol.51
, Issue.12
, pp. 5547-5561
-
-
Martin-Martin, R.1
Torsney, B.2
Lopez-Fidalgo, J.3
-
13
-
-
0042193172
-
Optimal designs for binary data under logistic regression
-
DOI 10.1016/S0378-3758(00)00173-7, PII S0378375800001737
-
Mathew, T. and Sinha, B. K. (2001). Optimal designs for binary data under logistic regression. J. Statist. Plann. Inference 93, 295-307. (Pubitemid 33626387)
-
(2001)
Journal of Statistical Planning and Inference
, vol.93
, Issue.1-2
, pp. 295-307
-
-
Mathew, T.1
Sinha, B.K.2
-
14
-
-
0001364764
-
Optimal designs for binary data
-
Minkin, S. (1987). Optimal designs for binary data. J. Amer. Statist. Assoc. 82, 1098-1103.
-
(1987)
J. Amer. Statist. Assoc.
, vol.82
, pp. 1098-1103
-
-
Minkin, S.1
-
15
-
-
68149131524
-
D-optimal designs for Poisson regression models
-
Russell, K., Woods, D., Lewis, S. and Eccleston, J. (2009). D-optimal designs for Poisson regression models. Statist. Sinica 19, 721-730.
-
(2009)
Statist. Sinica
, vol.19
, pp. 721-730
-
-
Russell, K.1
Woods, D.2
Lewis, S.3
Eccleston, J.4
-
16
-
-
1542276930
-
A geometric approach to optimal design theory
-
Silvey, S. D. and Titterington, D. M. (1973). A geometric approach to optimal design theory. Biometrika 60, 21-32.
-
(1973)
Biometrika
, vol.60
, pp. 21-32
-
-
Silvey, S.D.1
Titterington, D.M.2
-
17
-
-
0000081070
-
Optimal designs for binary response experiments with two design variables
-
Sitter, R. R. and Torsney, B. (1995a). Optimal designs for binary response experiments with two design variables. Statist. Sinica 5, 405-419.
-
(1995)
Statist. Sinica
, vol.5
, pp. 405-419
-
-
Sitter, R.R.1
Torsney, B.2
-
19
-
-
0001506741
-
Optimal designs for binary response experiments: Fieller D, and A criteria
-
Sitter, R. R. and Wu, C. F. J. (1993a). Optimal designs for binary response experiments: Fieller, D, and A criteria. Scand. J. Statist. 20, 329-341.
-
(1993)
Scand. J. Statist.
, vol.20
, pp. 329-341
-
-
Sitter, R.R.1
Wu, C.F.J.2
-
20
-
-
21144468111
-
On the accuracy of Fieller intervals for binary response data
-
Sitter, R. R. and Wu, C. F. J. (1993b). On the accuracy of Fieller intervals for binary response data. J. Amer. Statist. Assoc. 88, 1021-1025.
-
(1993)
J. Amer. Statist. Assoc.
, vol.88
, pp. 1021-1025
-
-
Sitter, R.R.1
Wu, C.F.J.2
-
21
-
-
0001409590
-
Estimation of correlation coefficients by ellipsoidal trimming
-
Titterington, D. M. (1978). Estimation of correlation coefficients by ellipsoidal trimming. J. Roy. Statist. Soc. Ser. C 27, 227-234.
-
(1978)
J. Roy. Statist. Soc. Ser. C
, vol.27
, pp. 227-234
-
-
Titterington, D.M.1
-
22
-
-
33744518098
-
On Optimal designs for high-dimensional binary regression models
-
(Edited by A. C. Atkinson, B. Bogacka and A. A. Zhigliavskii), Kluwer Academic, Boston
-
Torsney, B. and Gunduz, N. (2001). On Optimal Designs for High- Dimensional Binary Regression Models. In Optimum Design 2000 (Edited by A. C. Atkinson, B. Bogacka and A. A. Zhigliavskii) Kluwer Academic, Boston, 275-286.
-
(2001)
Optimum Design 2000
, pp. 275-286
-
-
Torsney, B.1
Gunduz, N.2
-
23
-
-
33744516369
-
Designs for generalized linear models with several variables and model uncertainty
-
DOI 10.1198/004017005000000571
-
Woods, D., Lewis, S., Eccleston, J. and Russell, K. (2006). Designs for generalized linear models with several variables and model uncertainty. Technometrics 48, 284-292. (Pubitemid 43813513)
-
(2006)
Technometrics
, vol.48
, Issue.2
, pp. 284-292
-
-
Woods, D.C.1
Lewis, S.M.2
Eccleston, J.A.3
Russell, K.G.4
-
24
-
-
65349115907
-
Support points of locally optimal designs for nonlinear models with two parameters
-
Yang, M. and Stufken, J. (2009). Support points of locally optimal designs for nonlinear models with two parameters. Ann. Statist. 37, 518-541.
-
(2009)
Ann. Statist.
, vol.37
, pp. 518-541
-
-
Yang, M.1
Stufken, J.2
|