메뉴 건너뛰기




Volumn 4, Issue , 2011, Pages 1602-1611

Parallel k-means clustering for quantitative ecoregion delineation using large data sets

Author keywords

Data mining; Ecoregionalization; High performance computing; K means clustering

Indexed keywords

COMPUTATIONAL PROBLEM; ECOLOGICAL PROBLEM; ECOREGIONALIZATION; ECOREGIONS; ENVIRONMENTAL CONDITIONS; ENVIRONMENTAL MONITORING; ENVIRONMENTAL SCIENCE; ENVIRONMENTAL SCIENTISTS; GROUND-BASED REMOTE SENSING; HABITAT PRESERVATION; HIGH PERFORMANCE COMPUTING; HIGH-RESOLUTION DATASETS; K-MEANS CLUSTERING; KNOWLEDGE EXTRACTION; LARGE DATASETS; LONG TIME SERIES; MODEL OUTPUTS; MODEL-MEASUREMENT INTERCOMPARISON; SATELLITE REMOTE SENSING; SPATIO-TEMPORAL CLUSTERING; SPECIES RANGES; TEMPORAL RESOLUTION;

EID: 79958256828     PISSN: None     EISSN: 18770509     Source Type: Conference Proceeding    
DOI: 10.1016/j.procs.2011.04.173     Document Type: Conference Paper
Times cited : (74)

References (14)
  • 1
    • 0346208517 scopus 로고    scopus 로고
    • Using multivariate clustering to characterize ecoregion borders
    • W. W. Hargrove, F. M. Hoffman, Using multivariate clustering to characterize ecoregion borders, Computing in Science & Engineering 1(4) (1999) 18-25. (Pubitemid 129604435)
    • (1999) Computing in Science and Engineering , vol.1 , Issue.4 , pp. 18-25
    • Hargrove, W.W.1    Hoffman, F.M.2
  • 2
    • 70350526870 scopus 로고    scopus 로고
    • Toward a national early warning system for forest disturbances using remotely sensed canopy phenology
    • W. W. Hargrove, J. P. Spruce, G. E. Gasser, F. M. Hoffman, Toward a national early warning system for forest disturbances using remotely sensed canopy phenology, Photogrammetric Engineering & Remote Sensing 75(10) (2009) 1150-1156.
    • (2009) Photogrammetric Engineering & Remote Sensing , vol.75 , Issue.10 , pp. 1150-1156
    • Hargrove, W.W.1    Spruce, J.P.2    Gasser, G.E.3    Hoffman, F.M.4
  • 5
    • 12944284040 scopus 로고    scopus 로고
    • Potential of multivariate quantitative methods for delineation and visualization of ecoregions
    • DOI 10.1007/s00267-003-1084-0
    • W.W. Hargrove, F.M. Hoffman, Potential of multivariate quantitative methods for delineation and visualization of ecoregions, Environmental Management 34(5) (2004) s39-s60. (Pubitemid 40762571)
    • (2005) Environmental Management , vol.34 , Issue.1 SUPPL.
    • Hargrove, W.W.1    Hoffman, F.M.2
  • 7
    • 0032137244 scopus 로고    scopus 로고
    • Large-scale parallel data clustering, pattern analysis and machine intelligence
    • D. Judd, P. McKinley, A. Jain, Large-scale parallel data clustering, Pattern Analysis and Machine Intelligence, IEEE Transactions on 20 (8) (1998) 871 -876.
    • (1998) IEEE Transactions on , vol.20 , Issue.8 , pp. 871-876
    • Judd, D.1    McKinley, P.2    Jain, A.3
  • 8
    • 84990637885 scopus 로고
    • PVM: A framework for parallel distributed computing
    • URL
    • V. S. Sunderam, PVM: a framework for parallel distributed computing, Concurrency: Pract. Exper. 2 (1990) 315-339. URL http://portal.acm.org/citation. cfm?id=95324.95327.
    • (1990) Concurrency: Pract. Exper. , vol.2 , pp. 315-339
    • Sunderam, V.S.1
  • 10
    • 0343586025 scopus 로고    scopus 로고
    • A data-clustering algorithm on distributed memory multiprocessors
    • M. Zaki, C.-T. Ho (Eds.), Vol. 1759 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg
    • I. Dhillon, D. Modha, A data-clustering algorithm on distributed memory multiprocessors, in: M. Zaki, C.-T. Ho (Eds.), Large-Scale Parallel Data Mining, Vol. 1759 of Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 2000, pp. 802-802.
    • (2000) Large-Scale Parallel Data Mining , pp. 802-802
    • Dhillon, I.1    Modha, D.2
  • 11
    • 33845488742 scopus 로고    scopus 로고
    • Parallel bisecting k-means with prediction clustering algorithm
    • DOI 10.1007/s11227-006-0002-7
    • Y. Li, S. Chung, Parallel bisecting k-means with prediction clustering algorithm, The Journal of Supercomputing 39 (2007) 19-37, 10.1007/s11227-006- 0002-7. (Pubitemid 44915077)
    • (2007) Journal of Supercomputing , vol.39 , Issue.1 , pp. 19-37
    • Li, Y.1    Chung, S.M.2
  • 12
    • 0036399517 scopus 로고    scopus 로고
    • Reducing the computation time of isodata and k-means unsupervised classification algorithms
    • S. J. Phillips, Reducing the computation time of isodata and k-means unsupervised classification algorithms, in: Geoscience and Remote Sensing Symposium, 2002 (IGARSS'02), Vol. 3, 2002, pp. 1627-1629.
    • (2002) Geoscience and Remote Sensing Symposium, 2002 (IGARSS'02) , vol.3 , pp. 1627-1629
    • Phillips, S.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.