메뉴 건너뛰기




Volumn 16, Issue 3, 2011, Pages 311-329

Lotka-Volterra equations in three dimensions satisfying the Kowalevski-Painlevé property

Author keywords

Kowalevski exponents; Lotka Volterra equations; Painlev analysis

Indexed keywords


EID: 79958241216     PISSN: 15603547     EISSN: 14684845     Source Type: Journal    
DOI: 10.1134/S1560354711030075     Document Type: Article
Times cited : (10)

References (22)
  • 1
    • 0344613016 scopus 로고
    • On the Integrability of Some Generalized Lotka-Volterra Systems
    • Bountis, T. C., Bier, M., and Hijmans, J., On the Integrability of Some Generalized Lotka-Volterra Systems, Phys. Lett. A, 1983, vol. 97, pp. 11-14.
    • (1983) Phys. Lett. A , vol.97 , pp. 11-14
    • Bountis, T.C.1    Bier, M.2    Hijmans, J.3
  • 2
    • 0040350169 scopus 로고    scopus 로고
    • Hamiltonian Structure and Darboux Theorem for Families of Generalized Lotka-Volterra Systems
    • Hernndez-Bermejo, B. and Fairen, V., Hamiltonian Structure and Darboux Theorem for Families of Generalized Lotka-Volterra Systems, J. Math. Phys., 1998, vol. 39, no. 11, pp. 6162-6174.
    • (1998) J. Math. Phys. , vol.39 , Issue.11 , pp. 6162-6174
    • Hernndez-Bermejo, B.1    Fairen, V.2
  • 3
    • 0642368972 scopus 로고
    • Multi-Hamiltonian Structure of Lotka-Volterra and Quantum Volterra Models
    • Cronström, Ch. and Noga, M., Multi-Hamiltonian Structure of Lotka-Volterra and Quantum Volterra Models, Nuclear Phys. B, 1995, vol. 445, pp. 501-515.
    • (1995) Nuclear Phys. B , vol.445 , pp. 501-515
    • Cronström, C.1    Noga, M.2
  • 4
    • 0000750659 scopus 로고
    • The Volterra Model and Its Relation to the Toda Lattice
    • Damianou, P. A., The Volterra Model and Its Relation to the Toda Lattice, Phys. Lett. A, 1991, vol. 155, pp. 126-132.
    • (1991) Phys. Lett. A , vol.155 , pp. 126-132
    • Damianou, P.A.1
  • 5
    • 0031540339 scopus 로고    scopus 로고
    • Comment on Hamiltonian Structures for the n-Dimensional Lotka-Volterra Equations
    • Kerner, E. H., Comment on Hamiltonian Structures for the n-Dimensional Lotka-Volterra Equations, J. Math. Phys., 1997, vol. 38, pp. 1218-1223.
    • (1997) J. Math. Phys. , vol.38 , pp. 1218-1223
    • Kerner, E.H.1
  • 6
    • 0034737212 scopus 로고    scopus 로고
    • Darboux Integrability for 3D Lotka-Volterra Systems
    • Cairo, L. and Llibre, J., Darboux Integrability for 3D Lotka-Volterra Systems, J. Phys. A, 2000, vol. 33, pp. 2395-2406.
    • (2000) J. Phys. A , vol.33 , pp. 2395-2406
    • Cairo, L.1    Llibre, J.2
  • 7
    • 0001693497 scopus 로고    scopus 로고
    • Polynomial First Integrals of the Lotka-Volterra System
    • Moulin-Ollagnier, J., Polynomial First Integrals of the Lotka-Volterra System, Bull. Sci. Math., 1997, vol. 121, pp. 463-476.
    • (1997) Bull. Sci. Math. , vol.121 , pp. 463-476
    • Moulin-Ollagnier, J.1
  • 8
    • 0002995659 scopus 로고
    • Kowalewski's Asymptotic Method, Kac-Moody Lie Algebras and Regularization
    • Adler, M. and van Moerbeke, P., Kowalewski's Asymptotic Method, Kac-Moody Lie Algebras and Regularization, Comm. Math. Phys., 1982, vol. 83, pp. 83-106.
    • (1982) Comm. Math. Phys. , vol.83 , pp. 83-106
    • Adler, M.1    van Moerbeke, P.2
  • 10
    • 79952033374 scopus 로고    scopus 로고
    • Kowalewski Exponents and Integrable Systems of Classic Dynamics: 1, 2
    • Russian
    • Borisov, A. V. and Tsygvintsev, A. V., Kowalewski Exponents and Integrable Systems of Classic Dynamics: 1, 2, Regul. Chaotic Dyn., 1996, vol. 1, no. 1, pp. 15-37 (Russian).
    • (1996) Regul. Chaotic Dyn. , vol.1 , Issue.1 , pp. 15-37
    • Borisov, A.V.1    Tsygvintsev, A.V.2
  • 11
    • 0039209252 scopus 로고    scopus 로고
    • A Brief History of Kovalevskaya Exponents and Modern Developments
    • Goriely, A., A Brief History of Kovalevskaya Exponents and Modern Developments, Regul. Chaotic Dyn., 2000, vol. 5, no. 1, pp. 3-15.
    • (2000) Regul. Chaotic Dyn. , vol.5 , Issue.1 , pp. 3-15
    • Goriely, A.1
  • 13
    • 0002828697 scopus 로고
    • Tensor Invariants of Quasihomogeneous Systems of Differential Equations and the Asymptotic Method of Kovalevskaya-Lyapunov
    • [Math. Notes, 1992, vol. 51, no. 2, pp. 138-142]
    • Kozlov, V. V., Tensor Invariants of Quasihomogeneous Systems of Differential Equations and the Asymptotic Method of Kovalevskaya-Lyapunov, Mat. Zametki, 1992, vol. 51, no. 2, pp. 46-52 [Math. Notes, 1992, vol. 51, no. 2, pp. 138-142].
    • (1992) Mat. Zametki , vol.51 , Issue.2 , pp. 46-52
    • Kozlov, V.V.1
  • 14
    • 34250146236 scopus 로고
    • Necessary Condition for the Existence of Algebraic First Integrals: 1. Kowalevski's Exponents
    • Yoshida, H., Necessary Condition for the Existence of Algebraic First Integrals: 1. Kowalevski's Exponents, Celestial Mech. Dynam. Astronom., 1983, vol. 31, no. 4, pp. 363-379.
    • (1983) Celestial Mech. Dynam. Astronom. , vol.31 , Issue.4 , pp. 363-379
    • Yoshida, H.1
  • 15
    • 33748901015 scopus 로고    scopus 로고
    • An Interpretation of the Presence of Both Positive and Negative Nongeneric Resonances in the Singularity Analysis
    • Andriopoulos, K. and Leach, P. G. L., An Interpretation of the Presence of Both Positive and Negative Nongeneric Resonances in the Singularity Analysis, Phys. Lett. A, 2006, vol. 359, pp. 199-203.
    • (2006) Phys. Lett. A , vol.359 , pp. 199-203
    • Andriopoulos, K.1    Leach, P.G.L.2
  • 16
    • 36749106124 scopus 로고
    • A Connection between Nonlinear Evolution Equations and Ordinary Differential Equations of P-type: 1
    • Ablowitz, M. J., Ramani, A., and Segur, H., A Connection between Nonlinear Evolution Equations and Ordinary Differential Equations of P-type: 1, J. Math. Phys., 1980, vol. 21, pp. 715-721.
    • (1980) J. Math. Phys. , vol.21 , pp. 715-721
    • Ablowitz, M.J.1    Ramani, A.2    Segur, H.3
  • 17
    • 36749113951 scopus 로고
    • A Connection between Nonlinear Evolution Equations and Ordinary Differential Equations of P-type: 2
    • Ablowitz, M. J., Ramani, A., and Segur, H., A Connection between Nonlinear Evolution Equations and Ordinary Differential Equations of P-type: 2, J. Math. Phys., 1980, vol. 21, pp. 1006-1015.
    • (1980) J. Math. Phys. , vol.21 , pp. 1006-1015
    • Ablowitz, M.J.1    Ramani, A.2    Segur, H.3
  • 18
    • 0001054468 scopus 로고
    • What Can Complex Time Tell Us about Real Time Dynamics?
    • Bountis, T. C., What Can Complex Time Tell Us about Real Time Dynamics? Internat. J. Bifur. Chaos Appl. Sci. Engrg., 1992, vol. 2, pp. 217-232.
    • (1992) Internat. J. Bifur. Chaos Appl. Sci. Engrg. , vol.2 , pp. 217-232
    • Bountis, T.C.1
  • 19
    • 0030535391 scopus 로고    scopus 로고
    • On Non-Integrability of General Systems of Differential Equations
    • Furta, S. D., On Non-Integrability of General Systems of Differential Equations, Z. Angew. Math. Phys., 1996, vol. 47, pp. 112-131.
    • (1996) Z. Angew. Math. Phys. , vol.47 , pp. 112-131
    • Furta, S.D.1
  • 20
    • 79958202612 scopus 로고
    • On Resonances on the Kovalevskaya Exponent
    • [Math. Notes, 1993, vol. 54, no. 4, pp. 1081-1082]
    • Sadetov, S. T., On Resonances on the Kovalevskaya Exponent, Mat. Zametki, 1993, vol. 54, no. 4, pp. 152-153 [Math. Notes, 1993, vol. 54, no. 4, pp. 1081-1082].
    • (1993) Mat. Zametki , vol.54 , Issue.4 , pp. 152-153
    • Sadetov, S.T.1
  • 21
    • 0035937680 scopus 로고    scopus 로고
    • On the Existence of Polynomial First Integrals of Quadratic Homogeneous Systems of Ordinary Differential Equations
    • Tsygvintsev, A., On the Existence of Polynomial First Integrals of Quadratic Homogeneous Systems of Ordinary Differential Equations, J. Phys. A, 2001, vol. 34, no. 11, pp. 2185-2193.
    • (2001) J. Phys. A , vol.34 , Issue.11 , pp. 2185-2193
    • Tsygvintsev, A.1
  • 22
    • 0000955168 scopus 로고
    • On an Explicit Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices
    • Kac, M. and van Moerbeke, P., On an Explicit Soluble System of Nonlinear Differential Equations Related to Certain Toda Lattices, Adv. Math., 1975, vol. 16, pp. 160-169.
    • (1975) Adv. Math. , vol.16 , pp. 160-169
    • Kac, M.1    van Moerbeke, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.