메뉴 건너뛰기




Volumn 2, Issue , 2010, Pages 711-717

A rollout control algorithm for discrete-time stochastic systems

Author keywords

[No Author keywords available]

Indexed keywords

ASSOCIATED COSTS; AUTONOMOUS INTELLIGENT SYSTEMS; COGNITIVE MODEL; CONTROL ACTIONS; CONTROLLED MARKOV CHAINS; DECISION MAKING PROCESS; DISCRETE-TIME STOCHASTIC SYSTEMS; GROWING DEMAND; LONG-TERM GOALS; LOOK-AHEAD; ONLINE DECISION-MAKING; SUBOPTIMAL CONTROL; THEORETICAL BOUNDS; TIME STEP;

EID: 79958238509     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1115/DSCC2010-4047     Document Type: Conference Paper
Times cited : (3)

References (27)
  • 3
    • 85012688561 scopus 로고
    • Princeton, NJ, Princeton University Press
    • Bellman, R., Dynamic Programming. Princeton, NJ, Princeton University Press, 1957.
    • (1957) Dynamic Programming
    • Bellman, R.1
  • 5
    • 0031272681 scopus 로고    scopus 로고
    • Rollout algorithms for comninatorial optimization
    • Bertsekas, D. P., Tsitsiklis, J. N., and Wu, C., "Rollout Algorithms for Comninatorial Optimization, " Heuristics, vol. 3, pp. 245-262, 1997.
    • (1997) Heuristics , vol.3 , pp. 245-262
    • Bertsekas, D.P.1    Tsitsiklis, J.N.2    Wu, C.3
  • 6
    • 0344672463 scopus 로고    scopus 로고
    • Rollout algorithms for stochastic scheduling problems
    • Bertsekas, D. P. and Castanon, D. A., "Rollout Algorithms for Stochastic Scheduling Problems, " Heuristics, vol. 5, pp. 89- 108, 1999.
    • (1999) Heuristics , vol.5 , pp. 89-108
    • Bertsekas, D.P.1    Castanon, D.A.2
  • 7
    • 0034086424 scopus 로고    scopus 로고
    • Comparing neuro-dynamic programming algorithms for the vehicle routing problem with stochastic demands
    • DOI 10.1016/S0305-0548(99)00146-X, PII S030505489900146X, Neural Networks in Business
    • Secomandi, N., "Comparing Neuro-Dynamic Programming Algorithms for the Vehicle Routing Problem with Stochastic Demands, " Computers and Operations Research, vol. 27, pp. 1201-1225, 2000. (Pubitemid 30398145)
    • (2000) Computers and Operations Research , vol.27 , Issue.11-12 , pp. 1201-1225
    • Secomandi, N.1
  • 8
    • 0036832961 scopus 로고    scopus 로고
    • Building a basic block instruction scheduler with reinforcement learning and rollouts
    • DOI 10.1023/A:1017976211990
    • McGovern, A., Moss, E., and Barto, A., "Building a Basic Building Block Scheduler Using Reinforcement Learning and Rollouts, " Machine Learning, vol. 49, pp. 141-160, 2002. (Pubitemid 34325683)
    • (2002) Machine Learning , vol.49 , Issue.2-3 , pp. 141-160
    • McGovern, A.1    Moss, E.2    Barto, A.G.3
  • 9
    • 0042941959 scopus 로고    scopus 로고
    • Revenue management in a dynamic network environment
    • Bertsimas, D. and Popescu, I., "Revenue Management in a Dynamic Network Environment, " Transportation Science, vol. 37, pp. 257-277, 2003.
    • (2003) Transportation Science , vol.37 , pp. 257-277
    • Bertsimas, D.1    Popescu, I.2
  • 11
    • 0025386231 scopus 로고
    • Expected-outcome: A general model of static evaluation
    • DOI 10.1109/34.44404
    • Abramson, B., "Expected-Outcome: A General Model of Static Evaluation, " IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, pp. 182-193, 1990. (Pubitemid 20666142)
    • (1990) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.12 , Issue.2 , pp. 182-193
    • Abramson Bruce1
  • 13
    • 0033135677 scopus 로고    scopus 로고
    • Model predictive control: Past, present and future
    • DOI 10.1016/S0098-1354(98)00301-9, PII S0098135498003019
    • Morari, M. and Lee, J. H., "Model Predictive Control: Past, Present, and Future, " Computers and Chemical Engineering, vol. 23, pp. 667-682, 1999. (Pubitemid 29210323)
    • (1999) Computers and Chemical Engineering , vol.23 , Issue.4-5 , pp. 667-682
    • Morari, M.1    H. Lee, J.2
  • 14
    • 0033876326 scopus 로고    scopus 로고
    • Constrained model predictive control: Stability and optimality
    • DOI 10.1016/S0005-1098(99)00214-9
    • Mayne, D. Q., Rawlings, J. B., Rao, C. V., and Scokaert, P. O. M., "Constrained Model Predictive Control: Stability and Optimality, " Automatica, vol. 36, pp. 789-814, 2000. (Pubitemid 30587683)
    • (2000) Automatica , vol.36 , Issue.6 , pp. 789-814
    • Mayne, D.Q.1    Rawlings, J.B.2    Rao, C.V.3    Scokaert, P.O.M.4
  • 15
    • 0033729274 scopus 로고    scopus 로고
    • Tutorial overview of model predictive control
    • Rawlings, J. B., "Tutorial Overview of Model Predictive Control, " Control Systems Magazine, vol. 20, pp. 38-52, 2000.
    • (2000) Control Systems Magazine , vol.20 , pp. 38-52
    • Rawlings, J.B.1
  • 16
    • 1442353213 scopus 로고    scopus 로고
    • State and output feedback nonlinear model predictive control: An overview
    • Findeisen, R., Imsland, L., Allgower, F., and Foss, B. A., "State and Output Feedback Nonlinear Model Predictive Control: An Overview, " European Journal of Control, vol. 9, pp. 190-205, 2003.
    • (2003) European Journal of Control , vol.9 , pp. 190-205
    • Findeisen, R.1    Imsland, L.2    Allgower, F.3    Foss, B.A.4
  • 17
    • 0041802770 scopus 로고    scopus 로고
    • A survey of industrial model predictive control technology
    • DOI 10.1016/S0967-0661(02)00186-7, PII S0967066102001867
    • Qin, S. J. and Badgwell, T. A., "A Survey of Industrial Model Predictive Control Technology, " Control Engineering Practice, vol. 11, pp. 733-764, 2003. (Pubitemid 36906334)
    • (2003) Control Engineering Practice , vol.11 , Issue.7 , pp. 733-764
    • Qin, S.J.1    Badgwell, T.A.2
  • 20
    • 0034550848 scopus 로고    scopus 로고
    • A learning algorithm for discrete-time stochastic control
    • DOI 10.1017/S0269964800142081
    • Borkar, V. S., "A Learning Algorithm for Discrete-Time Stochastic Control, " Probability in the Engineering and Information Sciences, vol. 14, pp. 243-258, 2000. (Pubitemid 33211056)
    • (2000) Probability in the Engineering and Informational Sciences , vol.14 , Issue.2 , pp. 243-258
    • Borkar, V.S.1
  • 23
    • 77955875058 scopus 로고    scopus 로고
    • A real-time computational learning model for sequential decision-making problems under uncertainty
    • Malikopoulos, A. A., Papalambros, P. Y., and Assanis, D. N., "A Real-Time Computational Learning Model for Sequential Decision-Making Problems Under Uncertainty, " ASME J. Dyn. Sys., Meas., Control, vol. 131, 4, pp. 041010-(8), 2009.
    • (2009) ASME J. Dyn. Sys., Meas., Control , vol.131 , Issue.4 , pp. 0410108
    • Malikopoulos, A.A.1    Papalambros, P.Y.2    Assanis, D.N.3
  • 24
    • 77953147550 scopus 로고    scopus 로고
    • Real-time self-learning optimization of diesel engine calibration
    • pp. 022803(7)
    • Malikopoulos, A. A., Assanis, D. N., and Papalambros, P. Y., "Real-Time Self-Learning Optimization of Diesel Engine Calibration, " ASME J. Eng. Gas Turbines Power, vol. 131, 2, pp. 022803(7), 2009.
    • (2009) ASME J. Eng. Gas Turbines Power , vol.131 , Issue.2
    • Malikopoulos, A.A.1    Assanis, D.N.2    Papalambros, P.Y.3
  • 27
    • 77955906974 scopus 로고    scopus 로고
    • Convergence properties of a computational learning model for unknown Markov chains
    • pp. 041011(7)
    • Malikopoulos, A. A., "Convergence Properties of a Computational Learning Model for Unknown Markov Chains, " ASME J. Dyn. Sys., Meas., Control, vol. 131, No. 4, pp. 041011(7), 2009.
    • (2009) ASME J. Dyn. Sys., Meas., Control , vol.131 , Issue.4
    • Malikopoulos, A.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.