-
1
-
-
0001375137
-
-
Kincaid, J. M.; Stell, G.; Goldmark, E. J. Chem. Phys. 1976, 65, 2172-2179
-
(1976)
J. Chem. Phys.
, vol.65
, pp. 2172-2179
-
-
Kincaid, J.M.1
Stell, G.2
Goldmark, E.3
-
6
-
-
0000285010
-
-
Lang, A.; Kahl, G.; Likos, C. N.; Löwen, H.; Watzlawek, M. J. Phys.: Condens. Matter 1999, 11, 10143-10161
-
(1999)
J. Phys.: Condens. Matter
, vol.11
, pp. 10143-10161
-
-
Lang, A.1
Kahl, G.2
Likos, C.N.3
Löwen, H.4
Watzlawek, M.5
-
7
-
-
0034817506
-
-
See, e.g.
-
See, e.g.: Hemmer, P. C.; Velasco, E.; Mederos, L.; Navascués, G.; Stell, G. J. Chem. Phys. 2001, 114, 2268-2275
-
(2001)
J. Chem. Phys.
, vol.114
, pp. 2268-2275
-
-
Hemmer, P.C.1
Velasco, E.2
Mederos, L.3
Navascués, G.4
Stell, G.5
-
8
-
-
0348220313
-
-
McConnell, G. A.; Gast, A. P.; Huang, J. S.; Smith, S. D. Phys. Rev. Lett. 1993, 71, 2102-2105
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 2102-2105
-
-
McConnell, G.A.1
Gast, A.P.2
Huang, J.S.3
Smith, S.D.4
-
9
-
-
0033891132
-
-
Hamley, I. W.; Daniel, C.; Mingvanish, W.; Mai, S. M.; Booth, C.; Messe, L.; Ryan, A. J. Langmuir 2000, 16, 2508-2514
-
(2000)
Langmuir
, vol.16
, pp. 2508-2514
-
-
Hamley, I.W.1
Daniel, C.2
Mingvanish, W.3
Mai, S.M.4
Booth, C.5
Messe, L.6
Ryan, A.J.7
-
10
-
-
2542483959
-
-
Lodge, T. P.; Bang, J.; Park, M. J.; Char, K. Phys. Rev. Lett. 2004, 92, 145501
-
(2004)
Phys. Rev. Lett.
, vol.92
, pp. 145501
-
-
Lodge, T.P.1
Bang, J.2
Park, M.J.3
Char, K.4
-
11
-
-
1642399625
-
-
Zeng, X.; Ungar, G.; Liu, Y.; Percec, V.; Dulcey, A. E.; Hobbs, J. K. Nature 2004, 428, 157-160
-
(2004)
Nature
, vol.428
, pp. 157-160
-
-
Zeng, X.1
Ungar, G.2
Liu, Y.3
Percec, V.4
Dulcey, A.E.5
Hobbs, J.K.6
-
12
-
-
77957951295
-
-
Lee, S.; Bluemle, M. J.; Bates, F. S. Science 2010, 330, 349-353
-
(2010)
Science
, vol.330
, pp. 349-353
-
-
Lee, S.1
Bluemle, M.J.2
Bates, F.S.3
-
14
-
-
34547261927
-
-
Hayashida, K.; Dotera, T.; Takano, A.; Matsushita, Y. Phys. Rev. Lett. 2007, 98, 195502
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 195502
-
-
Hayashida, K.1
Dotera, T.2
Takano, A.3
Matsushita, Y.4
-
16
-
-
0034226922
-
-
Velasco, E.; Mederos, L; Navascués, G.; Hemmer, P. C.; Stell, G. Phys. Rev. Lett. 2000, 85, 122-125
-
(2000)
Phys. Rev. Lett.
, vol.85
, pp. 122-125
-
-
Velasco, E.1
Mederos, L.2
Navascués, G.3
Hemmer, P.C.4
Stell, G.5
-
21
-
-
79051470505
-
-
Glaser, M. A.; Grason, G. M.; Kamien, R. D.; Košmrlj, A.; Santangelo, C. D.; Ziherl, P. EPL 2007, 78, 46004
-
(2007)
EPL
, vol.78
, pp. 46004
-
-
Glaser, M.A.1
Grason, G.M.2
Kamien, R.D.3
Košmrlj, A.4
Santangelo, C.D.5
Ziherl, P.6
-
26
-
-
4243962284
-
-
Likos, C. N.; Lang, A.; Watzlawek, M.; Loẅen, H. Phys. Rev. E 2001, 63, 031206
-
(2001)
Phys. Rev. e
, vol.63
, pp. 031206
-
-
Likos, C.N.1
Lang, A.2
Watzlawek, M.3
Loẅen, H.4
-
28
-
-
85067708084
-
-
Ordered Equilibrium Structures of Two-Dimensional Soft Matter Systems. Ph.D. Thesis, Technische Universität Wien, Vienna,; downloadable from.
-
Fornleitner, J. Ordered Equilibrium Structures of Two-Dimensional Soft Matter Systems. Ph.D. Thesis, Technische Universität Wien, Vienna, 2008; downloadable from http://www.ub.tuwien.ac.at.
-
(2008)
-
-
Fornleitner, J.1
-
29
-
-
85067716823
-
-
For large λ/σ, the unit cell of the inverted phase includes a large number of particles. The current implementation of the genetic algorithm search of hard-core/square-shoulder MECs (28, 34) can efficiently process crystal lattices with bases of no more than about 30 particles, which seems to be too few to describe the inverted morphologies either in 2D or in 3D. The one exception is the honeycomb lattice found for small λ/σ = 1.5 (22) which can be regarded as a single-particle-thick inverted disk phase. Thus, we conclude that the reasons for the absence of the inverted phases in the MEC phase sequences are technical rather than physical.
-
For large λ/σ, the unit cell of the inverted phase includes a large number of particles. The current implementation of the genetic algorithm search of hard-core/square-shoulder MECs (28, 34) can efficiently process crystal lattices with bases of no more than about 30 particles, which seems to be too few to describe the inverted morphologies either in 2D or in 3D. The one exception is the honeycomb lattice found for small λ/σ = 1.5 (22) which can be regarded as a single-particle-thick inverted disk phase. Thus, we conclude that the reasons for the absence of the inverted phases in the MEC phase sequences are technical rather than physical.
-
-
-
-
31
-
-
37149014500
-
-
Osterman, N.; Babić, D.; Poberaj, I.; Dobnikar, J.; Ziherl, P. Phys. Rev. Lett. 2007, 99, 248301
-
(2007)
Phys. Rev. Lett.
, vol.99
, pp. 248301
-
-
Osterman, N.1
Babić, D.2
Poberaj, I.3
Dobnikar, J.4
Ziherl, P.5
-
33
-
-
38349143711
-
-
Mladek, B. M.; Kahl, G.; Likos, C. N. Phys. Rev. Lett. 2008, 100, 028301
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 028301
-
-
Mladek, B.M.1
Kahl, G.2
Likos, C.N.3
-
34
-
-
85067718450
-
-
Phase Behaviour of Colloidal Systems. Ph.D. thesis, Technische Universität Wien, Vienna,; downloadable from.
-
Pauschenwein, G. J. Phase Behaviour of Colloidal Systems. Ph.D. thesis, Technische Universität Wien, Vienna, 2008; downloadable from http://www.ub.tuwien.ac.at.
-
(2008)
-
-
Pauschenwein, G.J.1
-
37
-
-
70349313464
-
-
Shin, H.; Grason, G. M.; Santangelo, C. D. Soft Matter 2009, 5, 3629-3638
-
(2009)
Soft Matter
, vol.5
, pp. 3629-3638
-
-
Shin, H.1
Grason, G.M.2
Santangelo, C.D.3
-
38
-
-
33144486158
-
-
Mladek, B. M.; Gottwald, D.; Kahl, G.; Neumann, M.; Likos, C. N. Phys. Rev. Lett. 2006, 96, 045701
-
(2006)
Phys. Rev. Lett.
, vol.96
, pp. 045701
-
-
Mladek, B.M.1
Gottwald, D.2
Kahl, G.3
Neumann, M.4
Likos, C.N.5
|