-
1
-
-
0027595948
-
Tissue engineering
-
Langer R, Vacanti JP. Tissue engineering. Science. 1993;260: 920-6. (Pubitemid 23209960)
-
(1993)
Science
, vol.260
, Issue.5110
, pp. 920-926
-
-
Langer, R.1
Vacanti, J.P.2
-
2
-
-
85016540358
-
Tissue engineering: From biology to biological substitutes
-
Nerem RM, Sambanis A. Tissue engineering: from biology to biological substitutes. Tissue Eng. 1995;1:3-13.
-
(1995)
Tissue Eng
, vol.1
, pp. 3-13
-
-
Nerem, R.M.1
Sambanis, A.2
-
3
-
-
33751306802
-
Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors
-
DOI 10.1016/j.biomaterials.2006.10.025, PII S0142961206009161
-
Jeong SI, Kim SY, Cho SK, Chong MS, Kim KS, Kim H, et al. Tissue-engineered vascular grafts composed of marine collagen and PLGA fibers using pulsatile perfusion bioreactors. Biomaterials. 2007;28:1115-22. (Pubitemid 44809424)
-
(2007)
Biomaterials
, vol.28
, Issue.6
, pp. 1115-1122
-
-
In, J.S.1
Kim, S.Y.2
Cho, S.K.3
Chong, M.S.4
Kim, K.S.5
Kim, H.6
Lee, S.B.7
Lee, Y.M.8
-
4
-
-
43549099478
-
In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: Influence of cell seeding density and collagen concentration
-
Hui TY, Cheung KMC, Cheung WL, Chan D, Chan BP. In vitro chondrogenic differentiation of human mesenchymal stem cells in collagen microspheres: influence of cell seeding density and collagen concentration. Biomaterials. 2008;29:3201-12.
-
(2008)
Biomaterials
, vol.29
, pp. 3201-3212
-
-
Hui, T.Y.1
Cheung, K.M.C.2
Cheung, W.L.3
Chan, D.4
Chan, B.P.5
-
5
-
-
3342893012
-
Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering
-
DOI 10.1016/j.biomaterials.2004.03.013, PII S0142961204002698
-
Yamane S, Iwasaki N, Majima T, Funakoshi T, Masuko T, Harada K, et al. Feasibility of chitosan-based hyaluronic acid hybrid biomaterial for a novel scaffold in cartilage tissue engineering. Biomaterials. 2005;26:611-9. (Pubitemid 38988303)
-
(2005)
Biomaterials
, vol.26
, Issue.6
, pp. 611-619
-
-
Yamane, S.1
Iwasaki, N.2
Majima, T.3
Funakoshi, T.4
Masuko, T.5
Harada, K.6
Minami, A.7
Monde, K.8
Nishimura, S.-I.9
-
6
-
-
33749063612
-
A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering
-
DOI 10.1002/jbm.a.30614
-
Zhang L, Ao Q, Wang AJ, Lu GY, Kong LJ, Gong YD, et al. A sandwich tubular scaffold derived from chitosan for blood vessel tissue engineering. J Biomed Mater Res Part A. 2006;77A:277-84. (Pubitemid 47233529)
-
(2006)
Journal of Biomedical Materials Research - Part A
, vol.77
, Issue.2
, pp. 277-284
-
-
Zhang, L.1
Ao, Q.2
Wang, A.3
Lu, G.4
Kong, L.5
Gong, Y.6
Zhao, N.7
Zhang, X.8
-
7
-
-
77951045827
-
The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration
-
Wang Y, Bella E, Lee CS, Migliaresi C, Pelcastre L, Schwartz Z, et al. The synergistic effects of 3-D porous silk fibroin matrix scaffold properties and hydrodynamic environment in cartilage tissue regeneration. Biomaterials. 2010;31:4672-81.
-
(2010)
Biomaterials
, vol.31
, pp. 4672-4681
-
-
Wang, Y.1
Bella, E.2
Lee, C.S.3
Migliaresi, C.4
Pelcastre, L.5
Schwartz, Z.6
-
8
-
-
67849088521
-
Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network
-
Hu J, Feng K, Liu XH, Ma PX. Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network. Biomaterials. 2009;30:5061-7.
-
(2009)
Biomaterials
, vol.30
, pp. 5061-5067
-
-
Hu, J.1
Feng, K.2
Liu, X.H.3
Ma, P.X.4
-
9
-
-
53149132368
-
Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly (L-lactide -co-3-caprolactone)
-
Jung Y, Park MS, Lee JW, Kim YH, Kim SH, Kim SH. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly (L-lactide -co-3-caprolactone). Biomaterials. 2008;29:4630-6.
-
(2008)
Biomaterials
, vol.29
, pp. 4630-4636
-
-
Jung, Y.1
Park, M.S.2
Lee, J.W.3
Kim, Y.H.4
Kim, S.H.5
Kim, S.H.6
-
10
-
-
15944396581
-
Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lactic-glycolic acid (PLGA) scaffold
-
DOI 10.1016/j.biomaterials.2004.10.037, PII S0142961204009573
-
Uematsu K, Hattori K, Ishimoto Y, Yamauchi J, Habata T, Takakura Y, et al. Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly lactic-glycolic acid (PLGA) scaffold. Biomaterials. 2005;26:4273-9. (Pubitemid 40430855)
-
(2005)
Biomaterials
, vol.26
, Issue.20
, pp. 4273-4279
-
-
Uematsu, K.1
Hattori, K.2
Ishimoto, Y.3
Yamauchi, J.4
Habata, T.5
Takakura, Y.6
Ohgushi, H.7
Fukuchi, T.8
Sato, M.9
-
11
-
-
33646013600
-
Fabrication and characterization of permeable degradable poly(D, L-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels
-
Wen XJ, Tresco PA. Fabrication and characterization of permeable degradable poly(D, L-lactide-co-glycolide) (PLGA) hollow fiber phase inversion membranes for use as nerve tract guidance channels. Biomaterials. 2006;27:3800-9.
-
(2006)
Biomaterials
, vol.27
, pp. 3800-3809
-
-
Wen, X.J.1
Tresco, P.A.2
-
12
-
-
3042741187
-
In vivo characterization of a novel bioresorbable poly(lactide-co- glycolide) tubular foam scaffold for tissue engineering applications
-
Richard RD, Aldor RB, Veronique M, Sandra S, Alastair F, Simon G, et al. In vivo characterization of a novel bioresorbable poly(lactide-co-glycolide) tubular foam scaffold for tissue engineering applications. J Mater Sci Mater Med. 2004;15:729-34.
-
(2004)
J Mater Sci Mater Med
, vol.15
, pp. 729-734
-
-
Richard, R.D.1
Aldor, R.B.2
Veronique, M.3
Sandra, S.4
Alastair, F.5
Simon, G.6
-
13
-
-
67349137395
-
Optimization of a natural collagen scaffold to aid cell-matrix penetration for urologic tissue engineering
-
Liu Y, Bharadwaj S, Lee SJ, Atala A, Zhang YY. Optimization of a natural collagen scaffold to aid cell-matrix penetration for urologic tissue engineering. Biomaterials. 2009;30:3865-73.
-
(2009)
Biomaterials
, vol.30
, pp. 3865-3873
-
-
Liu, Y.1
Bharadwaj, S.2
Lee, S.J.3
Atala, A.4
Zhang, Y.Y.5
-
14
-
-
70350733472
-
The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells
-
Zhao YL, Zhang S, Zhou JY, Wang JL, Zhen MC, Liu Y, et al. The development of a tissue-engineered artery using decellularized scaffold and autologous ovine mesenchymal stem cells. Biomaterials. 2010;31:296-307.
-
(2010)
Biomaterials
, vol.31
, pp. 296-307
-
-
Zhao, Y.L.1
Zhang, S.2
Zhou, J.Y.3
Wang, J.L.4
Zhen, M.C.5
Liu, Y.6
-
15
-
-
61549090607
-
Expansion and delivery of human fibroblasts on micronized acellular dermal matrix for skin regeneration
-
Zhang XJ, Deng ZH, Wang HL, Yang ZH, Guo WH, Li Y, et al. Expansion and delivery of human fibroblasts on micronized acellular dermal matrix for skin regeneration. Biomaterials. 2009;30:2666-74.
-
(2009)
Biomaterials
, vol.30
, pp. 2666-2674
-
-
Zhang, X.J.1
Deng, Z.H.2
Wang, H.L.3
Yang, Z.H.4
Guo, W.H.5
Li, Y.6
-
16
-
-
40649115896
-
A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells
-
Yang Q, Peng J, Guo QY, Huang JX, Zhang L, Yao J, et al. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials. 2008;29:2378-87.
-
(2008)
Biomaterials
, vol.29
, pp. 2378-2387
-
-
Yang, Q.1
Peng, J.2
Guo, Q.Y.3
Huang, J.X.4
Zhang, L.5
Yao, J.6
-
17
-
-
27744441368
-
Biomechanical assessment of tissue retrieved after in vivo cartilage defect repair: Tensile modulus of repair tissue and integration with host cartilage
-
DOI 10.1016/j.jbiomech.2004.10.016, PII S0021929004005330
-
Gratz KR, Wong VW, Chen AC, Fortier LA, Nixon AJ, Sah RL. Biomechanical assessment of tissue retrieved after in vivo cartilage defect repair: tensile modulus of repair tissue and integration with host cartilage. J Biomech. 2006;36:138-46. (Pubitemid 41585019)
-
(2006)
Journal of Biomechanics
, vol.39
, Issue.1
, pp. 138-146
-
-
Gratz, K.R.1
Wong, V.W.2
Chen, A.C.3
Fortier, L.A.4
Nixon, A.J.5
Sah, R.L.6
-
18
-
-
33645004438
-
An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects
-
Gotterbarm T, Richter W, Jung M, Berardi Vilei S, Mainil-Varlet P, Yamashita T, et al. An in vivo study of a growth-factor enhanced, cell free, two-layered collagen-tricalcium phosphate in deep osteochondral defects. Biomaterials. 2006;27:3387-95.
-
(2006)
Biomaterials
, vol.27
, pp. 3387-3395
-
-
Gotterbarm, T.1
Richter, W.2
Jung, M.3
Berardi Vilei, S.4
Mainil-Varlet, P.5
Yamashita, T.6
-
19
-
-
69249203496
-
The growth and differentiation of mesenchymal stem and progenitor cells cultured on aligned collagen matrices
-
Lanfer B, Seib FP, Freudenberg U, Stamov D, Bley T, Bornhäuser M, et al. The growth and differentiation of mesenchymal stem and progenitor cells cultured on aligned collagen matrices. Biomaterials. 2009;30:5950-8.
-
(2009)
Biomaterials
, vol.30
, pp. 5950-5958
-
-
Lanfer, B.1
Seib, F.P.2
Freudenberg, U.3
Stamov, D.4
Bley, T.5
Bornhäuser, M.6
-
20
-
-
77950853651
-
Directed growth of adult human white matter stem cell-derived neurons on aligned fibrillar collagen
-
Lanfer B, Hermann A, Kirsch M, Freudenberg U, Reuner U, Werner C, et al. Directed growth of adult human white matter stem cell-derived neurons on aligned fibrillar collagen. Tissue Eng Part A. 2010;16:1103-13.
-
(2010)
Tissue Eng Part A
, vol.16
, pp. 1103-1113
-
-
Lanfer, B.1
Hermann, A.2
Kirsch, M.3
Freudenberg, U.4
Reuner, U.5
Werner, C.6
-
21
-
-
56349130057
-
Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering
-
Tan HP, Wu JD, Lao LH, Gao CY. Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering. Acta Biomater. 2009;5:328-37.
-
(2009)
Acta Biomater
, vol.5
, pp. 328-337
-
-
Tan, H.P.1
Wu, J.D.2
Lao, L.H.3
Gao, C.Y.4
-
22
-
-
79958152428
-
The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering
-
Dai WD, Kawazoe N, Lin XT, Dong J, Chen GP. The influence of structural design of PLGA/collagen hybrid scaffolds in cartilage tissue engineering. Biomaterials. 2009;30:1-12.
-
(2009)
Biomaterials
, vol.30
, pp. 1-12
-
-
Dai, W.D.1
Kawazoe, N.2
Lin, X.T.3
Dong, J.4
Chen, G.P.5
-
23
-
-
75549086216
-
Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment
-
Wu SC, Chang JK, Wang CK, Wang GJ, Ho ML. Enhancement of chondrogenesis of human adipose derived stem cells in a hyaluronan-enriched microenvironment. Biomaterials. 2010;31:631-40.
-
(2010)
Biomaterials
, vol.31
, pp. 631-640
-
-
Wu, S.C.1
Chang, J.K.2
Wang, C.K.3
Wang, G.J.4
Ho, M.L.5
-
24
-
-
0036195890
-
Fabrication and biocompatibility of cell scaffolds of poly(L-lactic acid) and poly(L-lactic-co-glycolic acid)
-
DOI 10.1002/pat.178
-
Shi GX, Cai Q, Wang CY, Lu N, Wang SG, Bei JZ. Fabrication of cell scaffold of poly(L-lactic acid) and poly(L-lactic-co-glycolic acid) and biocompatibility. Polym Adv Technol. 2002;13:227-32. (Pubitemid 34209683)
-
(2002)
Polymers for Advanced Technologies
, vol.13
, Issue.3-4
, pp. 227-232
-
-
Shi, G.1
Cai, Q.2
Wang, C.3
Lu, N.4
Wang, S.5
Bei, J.6
-
25
-
-
33744966414
-
Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds
-
DOI 10.1016/j.biomaterials.2006.05.028, PII S0142961206004728
-
Yang F, Qu X, Cui WJ, Bei JZ, Yu FY, Lu SB, et al. Manufacturing and morphology structure of polylactide-type microtubules orientation structured scaffolds. Biomaterials. 2006;27:4923-33. (Pubitemid 43866926)
-
(2006)
Biomaterials
, vol.27
, Issue.28
, pp. 4923-4933
-
-
Yang, F.1
Qu, X.2
Cui, W.3
Bei, J.4
Yu, F.5
Lu, S.6
Wang, S.7
-
26
-
-
0035885558
-
Microtubular architecture of biodegradable polymer scaffolds
-
DOI 10.1002/1097-4636(20010915)56:4<469::AID-JBM1118>3.0.CO;2-H
-
Ma PX, Zhang RY. Microtubular architecture of biodegradable polymer scaffolds. J Biomed Mater Res. 2001;56:469-77. (Pubitemid 32606007)
-
(2001)
Journal of Biomedical Materials Research
, vol.56
, Issue.4
, pp. 469-477
-
-
Ma, P.X.1
Zhang, R.2
-
27
-
-
69649103727
-
The use of green fluorescence gene (GFP)-modified rabbit mesenchymal stem cells (rMSCs) co-cultured with chondrocytes in hydrogel constructs to reveal the chondrogenesis of MSCs
-
Yang HN, Park JS, Na K, Woo DG, Kwon YD, Park KH. The use of green fluorescence gene (GFP)-modified rabbit mesenchymal stem cells (rMSCs) co-cultured with chondrocytes in hydrogel constructs to reveal the chondrogenesis of MSCs. Biomaterials. 2009;30:6374-85.
-
(2009)
Biomaterials
, vol.30
, pp. 6374-6385
-
-
Yang, H.N.1
Park, J.S.2
Na, K.3
Woo, D.G.4
Kwon, Y.D.5
Park, K.H.6
-
28
-
-
67049167743
-
Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: Engineering the superficial zone of articular cartilage
-
Wise JK, Yarin AL, Megaridis CM, Cho M. Chondrogenic differentiation of human mesenchymal stem cells on oriented nanofibrous scaffolds: engineering the superficial zone of articular cartilage. Tissue Eng Part A. 2009;15:913-21.
-
(2009)
Tissue Eng Part A
, vol.15
, pp. 913-921
-
-
Wise, J.K.1
Yarin, A.L.2
Megaridis, C.M.3
Cho, M.4
-
29
-
-
33746714341
-
Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size
-
DOI 10.1089/ten.2006.12.1775
-
Li WJ, Jiang YJ, Tuan RS. Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size. Tissue Eng. 2006;12:1775-85. (Pubitemid 44162837)
-
(2006)
Tissue Engineering
, vol.12
, Issue.7
, pp. 1775-1785
-
-
Li, W.-J.1
Jiang, Y.J.2
Tuan, R.S.3
-
30
-
-
73549098444
-
The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model
-
Roosa SM, Kemppainen JM, Moffitt EN, Krebsbach PH, Hollister SJ. The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J Biomed Mater Res A. 2010;92:359-68.
-
(2010)
J Biomed Mater Res A
, vol.92
, pp. 359-368
-
-
Roosa, S.M.1
Kemppainen, J.M.2
Moffitt, E.N.3
Krebsbach, P.H.4
Hollister, S.J.5
-
31
-
-
10044289544
-
Electrospinning of nano/micro scale poly(l-lactic acid) aligned fibers and their potential in neural tissue engineering
-
DOI 10.1016/j.biomaterials.2004.06.051, PII S0142961204008567
-
Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly (L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26: 2603-10. (Pubitemid 39600712)
-
(2005)
Biomaterials
, vol.26
, Issue.15
, pp. 2603-2610
-
-
Yang, F.1
Murugan, R.2
Wang, S.3
Ramakrishna, S.4
-
32
-
-
56749133299
-
Effect of scaffold architecture and pore size on smooth muscle cell growth
-
Lee M, Wu BM, Dunn JC. Effect of scaffold architecture and pore size on smooth muscle cell growth. J Biomed Mater Res A. 2008;87:1010-6.
-
(2008)
J Biomed Mater Res A
, vol.87
, pp. 1010-1016
-
-
Lee, M.1
Wu, B.M.2
Dunn, J.C.3
-
33
-
-
53649106672
-
Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: An in vitro and in vivo study
-
Kasten P, Beyen I, Niemeyer P, Luginbuhl R, Bohner M, Richter W. Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater. 2008;4:1904-15.
-
(2008)
Acta Biomater
, vol.4
, pp. 1904-1915
-
-
Kasten, P.1
Beyen, I.2
Niemeyer, P.3
Luginbuhl, R.4
Bohner, M.5
Richter, W.6
-
35
-
-
0035239029
-
Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength
-
Deligianni DD, Katsala ND, Koutsoukos PG. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials. 2001;22:87-96.
-
(2001)
Biomaterials
, vol.22
, pp. 87-96
-
-
Deligianni, D.D.1
Katsala, N.D.2
Koutsoukos, P.G.3
-
36
-
-
33846367391
-
Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells
-
DOI 10.1016/j.joca.2006.08.008, PII S1063458406002469
-
Kuroda R, Isada K, Matsumoto T, Akisue T, Fujioka H, Mizuno K, et al. Treatment of a full-thickness articular cartilage defect in the femoral condyle of an athlete with autologous bone-marrow stromal cells. Osteoarthr Cartil. 2007;15:226-31. (Pubitemid 46132105)
-
(2007)
Osteoarthritis and Cartilage
, vol.15
, Issue.2
, pp. 226-231
-
-
Kuroda, R.1
Ishida, K.2
Matsumoto, T.3
Akisue, T.4
Fujioka, H.5
Mizuno, K.6
Ohgushi, H.7
Wakitani, S.8
Kurosaka, M.9
-
37
-
-
0036184589
-
Human autologous culture expanded bone marrow-mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees
-
DOI 10.1053/joca.2001.0504
-
Wakitani S, Imoto K, Yamamoto T, Saito M, Murata N, Yoneda M, et al. Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritis knees. Osteoarthr Cartil. 2002;10:199-206. (Pubitemid 34189569)
-
(2002)
Osteoarthritis and Cartilage
, vol.10
, Issue.3
, pp. 199-206
-
-
Wakitani, S.1
Imoto, K.2
Yamamoto, T.3
Saito, M.4
Murata, N.5
Yoneda, M.6
|