-
1
-
-
34547222469
-
-
Thomas, L. H.; Welberry, T. R.; Goossens, D. J.; Heerdegen, A. P.; Gutmann, M. J.; Teat, S. J.; Lee, P. L.; Wilson, C. C.; Cole, J. M. Acta Crystallogr. 2007, B63, 663-673
-
(2007)
Acta Crystallogr.
, vol.63
, pp. 663-673
-
-
Thomas, L.H.1
Welberry, T.R.2
Goossens, D.J.3
Heerdegen, A.P.4
Gutmann, M.J.5
Teat, S.J.6
Lee, P.L.7
Wilson, C.C.8
Cole, J.M.9
-
2
-
-
36649003091
-
-
Goodwin, A. L.; Redfern, S. A. T.; Dove, M. T.; Keen, D. A.; Tucker, M. G. Phys. Rev. B 2007, 76, 174114
-
(2007)
Phys. Rev. B
, vol.76
, pp. 174114
-
-
Goodwin, A.L.1
Redfern, S.A.T.2
Dove, M.T.3
Keen, D.A.4
Tucker, M.G.5
-
3
-
-
21244485313
-
Diffuse X-ray Scattering and Models of Disorder
-
Oxford University Press
-
Welberry, T. R. Diffuse X-ray Scattering and Models of Disorder. IUCr Monographs on Crystallography; Oxford University Press: 2004.
-
(2004)
IUCr Monographs on Crystallography
-
-
Welberry, T.R.1
-
7
-
-
0038626673
-
-
Isolated molecule geometry optimization calculations were performed using the Gaussian03 package (Revision C.02; Gaussian, Inc.: Wallingford, CT); using the B3PW91 functional and a 6-311G * basis set
-
Isolated molecule geometry optimization calculations were performed using the Gaussian03 package (Gaussian 03, Revision C.02; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Wallingford, CT, 2004); using the B3PW91 functional and a 6-311G* basis set.
-
(2004)
Gaussian 03
-
-
Frisch, M.J.1
Trucks, G.W.2
Schlegel, H.B.3
Scuseria, G.E.4
Robb, M.A.5
Cheeseman, J.R.6
Montgomery Jr., J.A.7
Vreven, T.8
Kudin, K.N.9
Burant, J.C.10
Millam, J.M.11
Iyengar, S.S.12
Tomasi, J.13
Barone, V.14
Mennucci, B.15
Cossi, M.16
Scalmani, G.17
Rega, N.18
Petersson, G.A.19
Nakatsuji, H.20
Hada, M.21
Ehara, M.22
Toyota, K.23
Fukuda, R.24
Hasegawa, J.25
Ishida, M.26
Nakajima, T.27
Honda, Y.28
Kitao, O.29
Nakai, H.30
Klene, M.31
Li, X.32
Knox, J.E.33
Hratchian, H.P.34
Cross, J.B.35
Bakken, V.36
Adamo, C.37
Jaramillo, J.38
Gomperts, R.39
Stratmann, R.E.40
Yazyev, O.41
Austin, A.J.42
Cammi, R.43
Pomelli, C.44
Ochterski, J.W.45
Ayala, P.Y.46
Morokuma, K.47
Voth, G.A.48
Salvador, P.49
Dannenberg, J.J.50
Zakrzewski, V.G.51
Dapprich, S.52
Daniels, A.D.53
Strain, M.C.54
Farkas, O.55
Malick, D.K.56
Rabuck, A.D.57
Raghavachari, K.58
Foresman, J.B.59
Ortiz, J.V.60
Cui, Q.61
Baboul, A.G.62
Clifford, S.63
Cioslowski, J.64
Stefanov, B.B.65
Liu, G.66
Liashenko, A.67
Piskorz, P.68
Komaromi, I.69
Martin, R.L.70
Fox, D.J.71
Keith, T.72
Al-Laham, M.A.73
Peng, C.Y.74
Nanayakkara, A.75
Challacombe, M.76
Gill, P.M.W.77
Johnson, B.78
Chen, W.79
Wong, M.W.80
Gonzalez, C.81
Pople, J.A.82
more..
-
9
-
-
53349108772
-
-
Görbitz, C. H.; Kaboli, M.; Read, M. L.; Vestli, K. Acta Crystallogr. 2008, E64, o2023
-
(2008)
Acta Crystallogr.
, vol.64
, pp. 2023
-
-
Görbitz, C.H.1
Kaboli, M.2
Read, M.L.3
Vestli, K.4
-
10
-
-
37549039510
-
-
Data were collected on a Rigaku R-axis/RAPID image plate diffractometer equipped with an Oxford Cryosystems low temperature device. The structure was solved using SHELXS-97 and refined using SHELXL-97 ()
-
Data were collected on a Rigaku R-axis/RAPID image plate diffractometer equipped with an Oxford Cryosystems low temperature device. The structure was solved using SHELXS-97 and refined using SHELXL-97 (Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112-122)
-
(2008)
Acta Crystallogr.
, vol.64
, pp. 112-122
-
-
Sheldrick, G.M.1
-
11
-
-
0141452964
-
-
within the WinGX suite of programs
-
within the WinGX suite of programs (Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837-838.
-
(1999)
J. Appl. Crystallogr.
, vol.32
, pp. 837-838
-
-
Farrugia, L.J.1
-
12
-
-
79958016832
-
-
o > 2σ(I), wR 2 = 0.1086 for 860 unique data (all data 4781). Crystallographic data have been deposited with the CCDC (CCDC-797470)
-
o > 2σ(I), wR 2 = 0.1086 for 860 unique data (all data 4781). Crystallographic data have been deposited with the CCDC (CCDC-797470).
-
-
-
-
13
-
-
15344345714
-
-
Geometry optimization and dynamics calculations were performed using the CP2K simulation package
-
Geometry optimization and dynamics calculations were performed using the CP2K simulation package (Vande Vondele, J.; Krack, M.; Mohamed, F.; Parinello, T.; Chassaing, T.; Hutter, J. Comput. Phys. Commun. 2005, 167, 103
-
(2005)
Comput. Phys. Commun.
, vol.167
, pp. 103
-
-
Vande Vondele, J.1
Krack, M.2
Mohamed, F.3
Parinello, T.4
Chassaing, T.5
Hutter, J.6
-
14
-
-
79958008557
-
-
The CP2K developers group
-
The CP2K developers group, http://cp2k.berlios.de/, 2008).
-
(2008)
-
-
-
15
-
-
4243943295
-
-
Calculations were performed using the PBE functional (;;)
-
Calculations were performed using the PBE functional (Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865)
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3865
-
-
Perdew, J.P.1
Burke, K.2
Ernzerhof, M.3
-
16
-
-
34648843516
-
-
coupled to a dual localized (Gaussian, double-zeta quality,)
-
coupled to a dual localized (Gaussian, double-zeta quality, VandeVondele, J.; Hutter, J. J. Chem. Phys. 2007, 127, 114105)
-
(2007)
J. Chem. Phys.
, vol.127
, pp. 114105
-
-
Vandevondele, J.1
Hutter, J.2
-
17
-
-
0000160164
-
-
plane-wave basis set description, optimized for use against the Goedecker-Teter-Hutter set of pseudopotentials (;;).
-
and plane-wave basis set description, optimized for use against the Goedecker-Teter-Hutter set of pseudopotentials (Goedecker, S.; Teter, M.; Hutter, J. Phys. Rev. B 1996, 54, 1703).
-
(1996)
Phys. Rev. B
, vol.54
, pp. 1703
-
-
Goedecker, S.1
Teter, M.2
Hutter, J.3
-
18
-
-
19944366594
-
-
A series of single-point energy calculations determined the optimum energy cutoff (300 Ry), which converged the total energy to within 1 meV/atom. The subsequent geometry-optimization (atomic positions only) calculations were performed using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.
-
A series of single-point energy calculations determined the optimum energy cutoff (300 Ry), which converged the total energy to within 1 meV/atom. The subsequent geometry-optimization (atomic positions only) calculations were performed using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. Broyden, C. G. J. Institute Math. Appl. 1970, 6, 222
-
(1970)
J. Institute Math. Appl.
, vol.6
, pp. 222
-
-
Broyden, C.G.1
-
21
-
-
79957979149
-
-
Note the failure of the PBE functional to model dispersion interactions is not so critical here, as all five models will be affected to the same degree (they all exhibit the same number of hydrogen bond interactions with very similar geometries). Therefore the relative energy differences between models will be the same, regardless of whether dispersion interactions are accounted for. These equilibrium structures provided the starting points for the MD simulations performed within the NVT ensemble, (maintained at 500K by a chain of Nose-Hoover thermostats) advancing in advancing in time increments of 0.55 fs until trajectories amounting to ca. 20 ps were obtained for each model
-
Note the failure of the PBE functional to model dispersion interactions is not so critical here, as all five models will be affected to the same degree (they all exhibit the same number of hydrogen bond interactions with very similar geometries). Therefore the relative energy differences between models will be the same, regardless of whether dispersion interactions are accounted for. These equilibrium structures provided the starting points for the MD simulations performed within the NVT ensemble, (maintained at 500K by a chain of Nose-Hoover thermostats) advancing in advancing in time increments of 0.55 fs until trajectories amounting to ca. 20 ps were obtained for each model.
-
-
-
-
22
-
-
78649776459
-
-
Reilly, A. M.; Habershon, S.; Morrison, C. A.; Rankin, D. W. H. J. Chem. Phys. 2010, 132, 134511
-
(2010)
J. Chem. Phys.
, vol.132
, pp. 134511
-
-
Reilly, A.M.1
Habershon, S.2
Morrison, C.A.3
Rankin, D.W.H.4
-
23
-
-
77949387766
-
-
Reilly, A. M.; Habershon, S.; Morrison, C. A.; Rankin, D. W. H. J. Chem. Phys. 2010, 132, 094502
-
(2010)
J. Chem. Phys.
, vol.132
, pp. 094502
-
-
Reilly, A.M.1
Habershon, S.2
Morrison, C.A.3
Rankin, D.W.H.4
|