|
Volumn 696, Issue , 2011, Pages 91-100
|
Feature selection in gene expression data using principal component analysis and rough set theory
|
Author keywords
Data preprocessing; Feature selection; Lower approximation; Principal component analysis; Rough sets; Upper approximation
|
Indexed keywords
CONFERENCE PAPER;
DATA MINING;
GENE EXPRESSION PROFILING;
INFORMATION PROCESSING;
MACHINE LEARNING;
MATHEMATICAL COMPUTING;
PATTERN RECOGNITION;
PRINCIPAL COMPONENT ANALYSIS;
PRIORITY JOURNAL;
ROUGH SET;
SIGNAL PROCESSING;
VARIANCE;
ALGORITHM;
ARTICLE;
BIOLOGY;
BREAST TUMOR;
FEMALE;
FINITE ELEMENT ANALYSIS;
GENETIC DATABASE;
GENETICS;
HUMAN;
METHODOLOGY;
SACCHAROMYCES CEREVISIAE;
STATISTICAL MODEL;
STATISTICS;
ALGORITHMS;
BREAST NEOPLASMS;
COMPUTATIONAL BIOLOGY;
DATA MINING;
DATABASES, GENETIC;
FEMALE;
FINITE ELEMENT ANALYSIS;
GENE EXPRESSION PROFILING;
HUMANS;
MODELS, STATISTICAL;
PRINCIPAL COMPONENT ANALYSIS;
SACCHAROMYCES CEREVISIAE;
|
EID: 79958017379
PISSN: 00652598
EISSN: None
Source Type: Book Series
DOI: 10.1007/978-1-4419-7046-6_10 Document Type: Conference Paper |
Times cited : (22)
|
References (10)
|