-
1
-
-
0038166193
-
Database-friendly random projections: Johnson-Lindenstrauss with binary coins
-
ACHLIOPTAS, D. (2003). Database-friendly random projections: Johnson-Lindenstrauss with binary coins. J. Comput. Syst. Sci. 66 671-687.
-
(2003)
J. Comput. Syst Sci.
, vol.66
, pp. 671-687
-
-
Achlioptas, D.1
-
3
-
-
0001758906
-
Heteroskedasticity and autocorrelation consistent covariance matrix estimation
-
MR1106513
-
ANDREWS, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica 59 817-858. MR1106513
-
(1991)
Econometrica
, vol.59
, pp. 817-858
-
-
Andrews, D.W.K.1
-
4
-
-
0002005293
-
Two moments suffice for Poisson approximations: The Chen-Stein method
-
MR0972770
-
ARRATIA, R., GOLDSTEIN, L. and GORDON, L. (1989). Two moments suffice for Poisson approximations: The Chen-Stein method. Ann. Probab. 17 9-25. MR0972770
-
(1989)
Ann Probab.
, vol.17
, pp. 9-25
-
-
Arratia, R.1
Goldstein, L.2
Gordon, L.3
-
5
-
-
2142645905
-
Effect of high dimension: By an example of a two sample problem
-
BAI, Z. and SARANADASA, H. (1996). Effect of high dimension: By an example of a two sample problem. Statist. Sinica 6 311-329. MR1399305 (Pubitemid 126706360)
-
(1996)
Statistica Sinica
, vol.6
, Issue.2
, pp. 311-329
-
-
Bai, Z.1
Saranadasa, H.2
-
7
-
-
51549106256
-
On asymptotics of eigenvectors of large sample covariance matrix
-
MR2330979
-
BAI, Z. D.,MIAO, B. Q. and PAN, G. M. (2007). On asymptotics of eigenvectors of large sample covariance matrix. Ann. Probab. 35 1532-1572. MR2330979
-
(2007)
Ann Probab.
, vol.35
, pp. 1532-1572
-
-
Bai, Z.D.1
Miao, B.Q.2
Pan, G.M.3
-
8
-
-
73949135723
-
Corrections to LRT on large-dimensional covariance matrix by RMT
-
MR2572444
-
BAI, Z., JIANG, D., YAO, J.-F. and ZHENG, S. (2009). Corrections to LRT on large-dimensional covariance matrix by RMT. Ann. Statist. 37 3822-3840. MR2572444
-
(2009)
Ann Statist.
, vol.37
, pp. 3822-3840
-
-
Bai, Z.1
Jiang, D.2
Yao, J.-F.3
Zheng, S.4
-
9
-
-
55649115527
-
A simple proof of the restricted isometry property for random matrices
-
MR2453366
-
BARANIUK, R., DAVENPORT, M., DEVORE, R. and WAKIN, M. (2008). A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28 253-263. MR2453366
-
(2008)
Constr Approx.
, vol.28
, pp. 253-263
-
-
Baraniuk, R.1
Davenport, M.2
Devore, R.3
Wakin, M.4
-
10
-
-
68649086910
-
Simultaneous analysis of Lasso and Dantzig selector
-
MR2533469
-
BICKEL, P. J., RITOV, Y. and TSYBAKOV, A. B. (2009). Simultaneous analysis of Lasso and Dantzig selector. Ann. Statist. 37 1705-1732. MR2533469
-
(2009)
Ann Statist.
, vol.37
, pp. 1705-1732
-
-
Bickel, P.J.1
Ritov, Y.2
Tsybakov, A.B.3
-
12
-
-
50849116760
-
Discussion: "The Dantzig selector: Statistical estimation when p is much larger than n," by E. Candes and T. Tao
-
MR2382647
-
CAI, T. T. and LV, J. (2007). Discussion: "The Dantzig selector: Statistical estimation when p is much larger than n," by E. Candes and T. Tao. Ann. Statist. 35 2365-2369. MR2382647
-
(2007)
Ann Statist.
, vol.35
, pp. 2365-2369
-
-
Cai, T.T.1
Lv, J.2
-
13
-
-
77955509952
-
Shifting inequal and recovery of sparse signals
-
MR2730209
-
CAI, T. T.,WANG, L. and XU, G. (2010a). Shifting inequality and recovery of sparse signals. IEEE Trans. Signal Process. 58 1300-1308. MR2730209
-
(2010)
IEEE Trans Signal Process.
, vol.58
, pp. 1300-1308
-
-
Cai, T.T.1
Wang, L.2
Xu, G.3
-
14
-
-
77953762405
-
Stable recovery of sparse signals and an oracle inequality
-
CAI, T. T.,WANG, L. and XU, G. (2010b). Stable recovery of sparse signals and an oracle inequality. IEEE Trans. Inform. Theory 56 3516-3522.
-
(2010)
IEEE Trans. Inform Theory
, vol.56
, pp. 3516-3522
-
-
Cai, T.T.1
Wang, L.2
Xu, G.3
-
15
-
-
77955132618
-
Optimal rates of convergence for covariance matrix estimation
-
MR2676885
-
CAI, T. T., ZHANG, C.-H. and ZHOU, H. H. (2010). Optimal rates of convergence for covariance matrix estimation. Ann. Statist. 38 2118-2144. MR2676885
-
(2010)
Ann Statist.
, vol.38
, pp. 2118-2144
-
-
Cai, T.T.1
Zhang, C.-H.2
Zhou, H.H.3
-
16
-
-
69049120308
-
Near-ideal model selection by 1 minimization
-
MR2543688
-
CANDÉS, E. J. and PLAN, Y. (2009). Near-ideal model selection by 1 minimization. Ann. Statist. 37 2145-2177. MR2543688
-
(2009)
Ann Statist.
, vol.37
, pp. 2145-2177
-
-
Candés, E.J.1
Plan, Y.2
-
17
-
-
29144439194
-
Decoding by linear programming
-
DOI 10.1109/TIT.2005.858979
-
CANDES, E. J. and TAO, T. (2005). Decoding by linear programming. IEEE Trans. Inform. Theory 51 4203-4215. MR2243152 (Pubitemid 41800353)
-
(2005)
IEEE Transactions on Information Theory
, vol.51
, Issue.12
, pp. 4203-4215
-
-
Candes, E.J.1
Tao, T.2
-
18
-
-
34548275795
-
The Dantzig selector: Statistical estimation when p is much larger than n (with discussion)
-
MR2382644
-
CANDES, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n (with discussion). Ann. Statist. 35 2313-2351. MR2382644
-
(2007)
Ann Statist.
, vol.35
, pp. 2313-2351
-
-
Candes, E.1
Tao, T.2
-
19
-
-
0042400551
-
Moderate deviations of B-valued independent random vectors
-
MR1092054
-
CHEN, X. (1990). Moderate deviations of B-valued independent random vectors. Chinese Ann. Math. Ser. A 11 621-629. MR1092054
-
(1990)
Chinese Ann. Math Ser. A
, vol.11
, pp. 621-629
-
-
Chen, X.1
-
20
-
-
0002518336
-
Moderate deviations of independent random vectors in a Banach space
-
MR1204537
-
CHEN, X. (1991). Moderate deviations of independent random vectors in a Banach space. Chinese J. Appl. Probab. Statist. 7 24-32. MR1204537
-
(1991)
Chinese J. Appl. Probab Statist.
, vol.7
, pp. 24-32
-
-
Chen, X.1
-
21
-
-
0347427624
-
Large Deviations Techniques and Applications, 2nd ed
-
(New York), Springer, New York. MR1619036
-
DEMBO, A. and ZEITOUNI, O. (1998). Large Deviations Techniques and Applications, 2nd ed Applications of Mathematics (New York) 38. Springer, New York. MR1619036
-
(1998)
Applications of Mathematics
, vol.38
-
-
Dembo, A.1
Zeitouni, O.2
-
22
-
-
0000436287
-
Finite de Finetti theorems in linear models and multivariate analysis
-
MR1211786
-
DIACONIS, P. W., EATON, M. L. and LAURITZEN, S. L. (1992). Finite de Finetti theorems in linear models and multivariate analysis. Scand. J. Statist. 19 289-315. MR1211786
-
(1992)
Scand. J Statist.
, vol.19
, pp. 289-315
-
-
Diaconis, P.W.1
Eaton, M.L.2
Lauritzen, S.L.3
-
23
-
-
33645712892
-
Compressed sensing
-
MR2241189
-
DONOHO, D. L. (2006a). Compressed sensing. IEEE Trans. Inform. Theory 52 1289-1306. MR2241189
-
(2006)
IEEE Trans. Inform Theory
, vol.52
, pp. 1289-1306
-
-
Donoho, D.L.1
-
24
-
-
33646365077
-
1-norm solution is also the sparsest solution
-
DOI 10.1002/cpa.20132
-
DONOHO, D. L. (2006b). For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution. Comm. Pure Appl. Math. 59 797-829. MR2217606 (Pubitemid 43667226)
-
(2006)
Communications on Pure and Applied Mathematics
, vol.59
, Issue.6
, pp. 797-829
-
-
Donoho, D.L.1
-
25
-
-
0035504028
-
Uncertainty principles and ideal atomic decomposition
-
DOI 10.1109/18.959265, PII S0018944801089465
-
DONOHO, D. L. andHUO, X. (2001). Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inform. Theory 47 2845-2862. MR1872845 (Pubitemid 33053488)
-
(2001)
IEEE Transactions on Information Theory
, vol.47
, Issue.7
, pp. 2845-2862
-
-
Donoho, D.L.1
Huo, X.2
-
26
-
-
33144483155
-
Stable recovery of sparse overcomplete representations in the presence of noise
-
DOI 10.1109/TIT.2005.860430
-
DONOHO, D. L., ELAD, M. and TEMLYAKOV, V. N. (2006). Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inform. Theory 52 6-18. MR2237332 (Pubitemid 43263116)
-
(2006)
IEEE Transactions on Information Theory
, vol.52
, Issue.1
, pp. 6-18
-
-
Donoho, D.L.1
Elad, M.2
Temlyakov, V.N.3
-
27
-
-
53849086824
-
Sure independence screening for ultrahigh dimensional feature space
-
MR2530322
-
FAN, J. and LV, J. (2008). Sure independence screening for ultrahigh dimensional feature space. J. R. Stat. Soc. Ser. B Stat. Methodol. 70 849-911. MR2530322
-
(2008)
J. R. Stat. Soc. Ser. B Stat Methodol.
, vol.70
, pp. 849-911
-
-
Fan, J.1
L, V.J.2
-
28
-
-
77949352853
-
A selective overview of variable selection in high dimensional feature space
-
MR2640659
-
FAN, J. and LV, J. (2010). A selective overview of variable selection in high dimensional feature space. Statist. Sinica 20 101-148. MR2640659
-
(2010)
Statist Sinica
, vol.20
, pp. 101-148
-
-
Fan, J.1
L, V.J.2
-
29
-
-
2942640138
-
On sparse representations in arbitrary redundant bases
-
MR2094894
-
FUCHS, J.-J. (2004). On sparse representations in arbitrary redundant bases. IEEE Trans. Inform. Theory 50 1341-1344. MR2094894
-
(2004)
IEEE Trans. Inform Theory
, vol.50
, pp. 1341-1344
-
-
Fuchs, J.-J.1
-
30
-
-
11244330494
-
The asymptotic distributions of the largest entries of sample correlation matrices
-
DOI 10.1214/105051604000000143
-
JIANG, T. (2004a). The asymptotic distributions of the largest entries of sample correlation matrices. Ann. Appl. Probab. 14 865-880. MR2052906 (Pubitemid 41449244)
-
(2004)
Annals of Applied Probability
, vol.14
, Issue.2
, pp. 865-880
-
-
Jiang, T.1
-
31
-
-
47849095724
-
The limiting distributions of eigenvalues of sample correlation matrices
-
MR2082906
-
JIANG, T. (2004b). The limiting distributions of eigenvalues of sample correlation matrices. Sankhya 66 35-48. MR2082906
-
(2004)
Sankhya
, vol.66
, pp. 35-48
-
-
Jiang, T.1
-
32
-
-
11244283404
-
Maxima of entries of Haar distributed matrices
-
DOI 10.1007/s00440-004-0376-5
-
JIANG, T. (2005). Maxima of entries of Haar distributed matrices. Probab. Theory Related Fields 131 121-144. MR2105046 (Pubitemid 40067054)
-
(2005)
Probability Theory and Related Fields
, vol.131
, Issue.1
, pp. 121-144
-
-
Jiang, T.1
-
33
-
-
33750157608
-
How many entries of a typical orthogonal matrix can be approximated by independent normals?
-
DOI 10.1214/009117906000000205
-
JIANG, T. (2006). How many entries of a typical orthogonal matrix can be approximated by independent normals? Ann. Probab. 34 1497-1529. MR2257653 (Pubitemid 44598878)
-
(2006)
Annals of Probability
, vol.34
, Issue.4
, pp. 1497-1529
-
-
Jiang, T.1
-
34
-
-
67650497880
-
The entries of circular orthogonal ensembles
-
063302, MR2536107
-
JIANG, T. (2009). The entries of circular orthogonal ensembles. J. Math. Phys. 50 063302, 13. MR2536107
-
(2009)
J. Math Phys.
, vol.50
, pp. 13
-
-
Jiang, T.1
-
35
-
-
0035641726
-
On the distribution of the largest eigenvalue in principal components analysis
-
MR1863961
-
JOHNSTONE, I. M. (2001). On the distribution of the largest eigenvalue in principal components analysis. Ann. Statist. 29 295-327. MR1863961
-
(2001)
Ann Statist.
, vol.29
, pp. 295-327
-
-
Johnstone, I.M.1
-
36
-
-
62349134314
-
Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy- Widom limits and rates of convergence
-
MR2485010
-
JOHNSTONE, I. M. (2008). Multivariate analysis and Jacobi ensembles: Largest eigenvalue, Tracy- Widom limits and rates of convergence. Ann. Statist. 36 2638-2716. MR2485010
-
(2008)
Ann Statist.
, vol.36
, pp. 2638-2716
-
-
Johnstone, I.M.1
-
37
-
-
0000543182
-
Sur les dëviations modërëes des sommes de variables alëatoires vectorielles indëpendantes de même loi
-
MR1162575
-
LEDOUX, M. (1992). Sur les dëviations modërëes des sommes de variables alëatoires vectorielles indëpendantes de même loi. Ann. Inst. H. Poincarë Probab. Statist. 28 267-280. MR1162575
-
(1992)
Ann. Inst. H. Poincarë Probab Statist.
, vol.28
, pp. 267-280
-
-
Ledoux, M.1
-
38
-
-
33645677536
-
Some strong limit theorems for the largest entries of sample correlation matrices
-
DOI 10.1214/105051605000000773
-
LI, D. and ROSALSKY, A. (2006). Some strong limit theorems for the largest entries of sample correlation matrices. Ann. Appl. Probab. 16 423-447. MR2209348 (Pubitemid 43535939)
-
(2006)
Annals of Applied Probability
, vol.16
, Issue.1
, pp. 423-447
-
-
Li, D.1
Rosalsky, A.2
-
39
-
-
77953702255
-
Necessary and sufficient conditions for the asymptotic distribution of the largest entry of a sample correlation matrix
-
LI, D., LIU, W. D. and ROSALSKY, A. (2009). Necessary and sufficient conditions for the asymptotic distribution of the largest entry of a sample correlation matrix. Probab. Theory Related Fields 148 5-35.
-
(2009)
Probab Theory Related Fields
, vol.148
, pp. 5-35
-
-
L, I.D.1
Liu, W.D.2
Rosalsky, A.3
-
40
-
-
0000288302
-
Band covariance matrix estimation using restricted residuals: A Monte Carlo analysis
-
LIGERALDE, A. and BROWN, B. (1995). Band covariance matrix estimation using restricted residuals: A Monte Carlo analysis. Internat. Econom. Rev. 36 751-767.
-
(1995)
Internat. Econom Rev.
, vol.36
, pp. 751-767
-
-
Ligeralde, A.1
Brown, B.2
-
41
-
-
63049106197
-
The asymptotic distribution and Berry-Esseen bound of a new test for independence in high dimension with an application to stochastic optimization
-
MR2474539
-
LIU, W.-D., LIN, Z. and SHAO, Q.-M. (2008). The asymptotic distribution and Berry-Esseen bound of a new test for independence in high dimension with an application to stochastic optimization. Ann. Appl. Probab. 18 2337-2366. MR2474539
-
(2008)
Ann. Appl Probab.
, vol.18
, pp. 2337-2366
-
-
Liu, W.-D.1
Lin, Z.2
Shao, Q.-M.3
-
42
-
-
59449098080
-
Universality results for the largest eigenvalues of some sample covariance matrix ensembles
-
MR2475670
-
PËCHË, S. (2009). Universality results for the largest eigenvalues of some sample covariance matrix ensembles. Probab. Theory Related Fields 143 481-516. MR2475670
-
(2009)
Probab Theory Related Fields
, vol.143
, pp. 481-516
-
-
Pëchë, S.1
-
43
-
-
0040234620
-
Estimates of Berry-Esseen type for the probabilities of large deviations
-
228. MR1142075
-
SAKHANENKO, A. I. (1991). Estimates of Berry-Esseen type for the probabilities of large deviations. Sibirsk. Mat. Zh. 32 133-142, 228. MR1142075
-
(1991)
Sibirsk. Ma Zh.
, vol.32
, pp. 133-142
-
-
Sakhanenko, A.I.1
-
44
-
-
63049085100
-
Asymptotic distribution of the largest off-diagonal entry of correlation matrices
-
MR2327033
-
ZHOU, W. (2007). Asymptotic distribution of the largest off-diagonal entry of correlation matrices. Trans. Amer. Math. Soc. 359 5345-5363. MR2327033
-
(2007)
Trans. Amer. Math Soc.
, vol.359
, pp. 5345-5363
-
-
Zhou, W.1
|