메뉴 건너뛰기




Volumn 6679 LNAI, Issue PART 2, 2011, Pages 253-261

Fusion of similarity measures for time series classification

Author keywords

classification; fusion; hybrid similarity measure; time series

Indexed keywords

APPROPRIATE DISTANCES; CLASSIFICATION; CLASSIFICATION ACCURACY; DATA-DRIVEN; DECISION TASK; DISTANCE MEASURE; FUSION; HYBRID SIMILARITY MEASURE; NEAREST NEIGHBOR METHOD; REAL-WORLD DATASETS; SIMILARITY MEASURE; STATE OF THE ART; TIME SERIES CLASSIFICATIONS; DATA DRIVEN DECISION; STATE-OF-THE-ART METHODS;

EID: 79957901710     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-21222-2_31     Document Type: Conference Paper
Times cited : (14)

References (20)
  • 1
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36(1), 105-139 (1999)
    • (1999) Machine Learning , vol.36 , Issue.1 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 5
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • Dietterich, T.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40(2), 139-157 (2000)
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.1
  • 6
    • 84867136666 scopus 로고    scopus 로고
    • Querying and mining of time series data: Experimental comparison of representations and distance measures
    • Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proceedings of the VLDB Endowment 1(2), 1542-1552 (2008)
    • (2008) Proceedings of the VLDB Endowment , vol.1 , Issue.2 , pp. 1542-1552
    • Ding, H.1    Trajcevski, G.2    Scheuermann, P.3    Wang, X.4    Keogh, E.5
  • 8
    • 0042711018 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: A survey and empirical demonstration
    • Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: A survey and empirical demonstration. Data Mining and Knowledge Discovery 7(4), 349-371 (2003)
    • (2003) Data Mining and Knowledge Discovery , vol.7 , Issue.4 , pp. 349-371
    • Keogh, E.1    Kasetty, S.2
  • 12
    • 2942525700 scopus 로고    scopus 로고
    • Making time-series classification more accurate using learned constraints
    • Ratanamahatana, C., Keogh, E.: Making time-series classification more accurate using learned constraints. In: SIAM Int'l. Conf. on Data Mining, pp. 11-22 (2004)
    • (2004) SIAM Int'l. Conf. on Data Mining , pp. 11-22
    • Ratanamahatana, C.1    Keogh, E.2
  • 15
    • 0017930815 scopus 로고
    • Dynamic programming algorithm optimization for spoken word recognition
    • Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. Acoustics, Speech and Signal Processing 26(1), 43-49 (1978)
    • (1978) Acoustics, Speech and Signal Processing , vol.26 , Issue.1 , pp. 43-49
    • Sakoe, H.1    Chiba, S.2
  • 18
    • 84880657922 scopus 로고    scopus 로고
    • Stacked generalization: When does it work?
    • Morgan Kaufmann, San Francisco
    • Ting, K., Witten, I.: Stacked generalization: when does it work?. In: 15th Int'l. Joint Conf. on Artifical Intelligence, vol. 2, pp. 866-871. Morgan Kaufmann, San Francisco (1997)
    • (1997) 15th Int'l. Joint Conf. on Artifical Intelligence , vol.2 , pp. 866-871
    • Ting, K.1    Witten, I.2
  • 19
    • 0035364957 scopus 로고    scopus 로고
    • Time series forecasting with neural network ensembles: An application for exchange rate prediction
    • Zhang, G., Berardi, V.: Time series forecasting with neural network ensembles: an application for exchange rate prediction. Journal of the Operational Research Society 52(6), 652-664 (2001)
    • (2001) Journal of the Operational Research Society , vol.52 , Issue.6 , pp. 652-664
    • Zhang, G.1    Berardi, V.2
  • 20
    • 0036567392 scopus 로고    scopus 로고
    • Ensembling neural networks: Many could be better than all
    • Zhou, Z., Wu, J., Tang, W.: Ensembling neural networks: Many could be better than all. Artificial intelligence 137(1-2), 239-263 (2002)
    • (2002) Artificial Intelligence , vol.137 , Issue.1-2 , pp. 239-263
    • Zhou, Z.1    Wu, J.2    Tang, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.