-
1
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
Bauer, E., Kohavi, R.: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants. Machine Learning 36(1), 105-139 (1999)
-
(1999)
Machine Learning
, vol.36
, Issue.1
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
2
-
-
79951628123
-
Time-Series Classification based on Individualised Error Prediction
-
IEEE, Los Alamitos
-
Buza, K., Nanopoulos, A., Schmidt-Thieme, L.: Time-Series Classification based on Individualised Error Prediction. In: International Conference on Computational Science and Engineering. IEEE, Los Alamitos (2010)
-
(2010)
International Conference on Computational Science and Engineering
-
-
Buza, K.1
Nanopoulos, A.2
Schmidt-Thieme, L.3
-
5
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
Dietterich, T.: An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization. Machine Learning 40(2), 139-157 (2000)
-
(2000)
Machine Learning
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.1
-
6
-
-
84867136666
-
Querying and mining of time series data: Experimental comparison of representations and distance measures
-
Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series data: experimental comparison of representations and distance measures. Proceedings of the VLDB Endowment 1(2), 1542-1552 (2008)
-
(2008)
Proceedings of the VLDB Endowment
, vol.1
, Issue.2
, pp. 1542-1552
-
-
Ding, H.1
Trajcevski, G.2
Scheuermann, P.3
Wang, X.4
Keogh, E.5
-
7
-
-
0003684449
-
-
ch.5 Springer, Heidelberg
-
Hastie, T., Tibshirani, R., Friedman, J.: The elements of statistical learning: data mining, inference, and prediction, ch.5 Springer, Heidelberg (2009)
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
8
-
-
0042711018
-
On the need for time series data mining benchmarks: A survey and empirical demonstration
-
Keogh, E., Kasetty, S.: On the need for time series data mining benchmarks: A survey and empirical demonstration. Data Mining and Knowledge Discovery 7(4), 349-371 (2003)
-
(2003)
Data Mining and Knowledge Discovery
, vol.7
, Issue.4
, pp. 349-371
-
-
Keogh, E.1
Kasetty, S.2
-
12
-
-
2942525700
-
Making time-series classification more accurate using learned constraints
-
Ratanamahatana, C., Keogh, E.: Making time-series classification more accurate using learned constraints. In: SIAM Int'l. Conf. on Data Mining, pp. 11-22 (2004)
-
(2004)
SIAM Int'l. Conf. on Data Mining
, pp. 11-22
-
-
Ratanamahatana, C.1
Keogh, E.2
-
14
-
-
84942620314
-
XMedia: Web People Search by Clustering with Machinely Learned Similarity Measures
-
Romano, L., Buza, K., Giuliano, C., Schmidt-Thieme, L.: XMedia: Web People Search by Clustering with Machinely Learned Similarity Measures. In: 18th WWW Conference on 2nd Web People Search Evaluation Workshop, WePS 2009 (2009)
-
18th WWW Conference on 2nd Web People Search Evaluation Workshop, WePS 2009 (2009)
-
-
Romano, L.1
Buza, K.2
Giuliano, C.3
Schmidt-Thieme, L.4
-
15
-
-
0017930815
-
Dynamic programming algorithm optimization for spoken word recognition
-
Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. Acoustics, Speech and Signal Processing 26(1), 43-49 (1978)
-
(1978)
Acoustics, Speech and Signal Processing
, vol.26
, Issue.1
, pp. 43-49
-
-
Sakoe, H.1
Chiba, S.2
-
16
-
-
33750541433
-
-
Schuller, B., Reiter, S., Muller, R., Al-Hames, M., Lang, M., Rigoll, G.: Speaker independent speech emotion recognition by ensemble classification (2005)
-
(2005)
Speaker Independent Speech Emotion Recognition by Ensemble Classification
-
-
Schuller, B.1
Reiter, S.2
Muller, R.3
Al-Hames, M.4
Lang, M.5
Rigoll, G.6
-
17
-
-
33745776113
-
Large scale multiple kernel learning
-
Sonnenburg, S., Ratsch, G., Schafer, C., Scholkopf, B.: Large scale multiple kernel learning. The Journal of Machine Learning Research 7, 1531-1565 (2006)
-
(2006)
The Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Ratsch, G.2
Schafer, C.3
Scholkopf, B.4
-
18
-
-
84880657922
-
Stacked generalization: When does it work?
-
Morgan Kaufmann, San Francisco
-
Ting, K., Witten, I.: Stacked generalization: when does it work?. In: 15th Int'l. Joint Conf. on Artifical Intelligence, vol. 2, pp. 866-871. Morgan Kaufmann, San Francisco (1997)
-
(1997)
15th Int'l. Joint Conf. on Artifical Intelligence
, vol.2
, pp. 866-871
-
-
Ting, K.1
Witten, I.2
-
19
-
-
0035364957
-
Time series forecasting with neural network ensembles: An application for exchange rate prediction
-
Zhang, G., Berardi, V.: Time series forecasting with neural network ensembles: an application for exchange rate prediction. Journal of the Operational Research Society 52(6), 652-664 (2001)
-
(2001)
Journal of the Operational Research Society
, vol.52
, Issue.6
, pp. 652-664
-
-
Zhang, G.1
Berardi, V.2
-
20
-
-
0036567392
-
Ensembling neural networks: Many could be better than all
-
Zhou, Z., Wu, J., Tang, W.: Ensembling neural networks: Many could be better than all. Artificial intelligence 137(1-2), 239-263 (2002)
-
(2002)
Artificial Intelligence
, vol.137
, Issue.1-2
, pp. 239-263
-
-
Zhou, Z.1
Wu, J.2
Tang, W.3
|