-
1
-
-
0001429085
-
Von Neumann capacity of noisy quantum channels
-
10.1103/PhysRevA.56.3470; e-print arXiv:quant-ph/9609024.
-
Adami C. Cerf N.J. Von Neumann capacity of noisy quantum channels. Phys. Rev. A. 1997, 56:3470. 10.1103/PhysRevA.56.3470, and ;e-print arXiv:quant-ph/9609024.
-
(1997)
Phys. Rev. A.
, vol.56
, pp. 3470
-
-
Adami, C.1
Cerf, N.J.2
-
2
-
-
84859844711
-
Instruments and mutual entropies in quantum information
-
10.4064/bc73 ;e-print arXiv:quant-ph/0412116.
-
Barchielli A. Lupieri G. Instruments and mutual entropies in quantum information. Banach Center Publications 2006, 73:65. 10.4064/bc73, and ;e-print arXiv:quant-ph/0412116.
-
(2006)
Banach Center Publications
, vol.73
, pp. 65
-
-
Barchielli, A.1
Lupieri, G.2
-
4
-
-
44649087899
-
Global information balance in quantum measurements
-
10.1103/PhysRevLett.100.210504
-
Buscemi F. Hayashi M. Horodecki M. Global information balance in quantum measurements. Phys. Rev. Lett. 2008, 100:210504. 10.1103/PhysRevLett.100.210504.
-
(2008)
Phys. Rev. Lett.
, vol.100
, pp. 210504
-
-
Buscemi, F.1
Hayashi, M.2
Horodecki, M.3
-
5
-
-
34250495765
-
An operational approach to quantum probability
-
10.1007/BF01647093
-
Davies E.B. Lewis J.T. An operational approach to quantum probability. Commun. Math. Phys 1970, 17:239. 10.1007/BF01647093.
-
(1970)
Commun. Math. Phys
, vol.17
, pp. 239
-
-
Davies, E.B.1
Lewis, J.T.2
-
6
-
-
0040191307
-
A problem of information gain by quantum measurements
-
10.1007/BF00815357.
-
Groenewold H.J. A problem of information gain by quantum measurements. Int. J. Theor. Phys. 1971, 4:327. 10.1007/BF00815357.
-
(1971)
Int. J. Theor. Phys.
, vol.4
, pp. 327
-
-
Groenewold, H.J.1
-
7
-
-
34247481757
-
On complementary channels and the additivity problem
-
10.1137/S0040585X97982244, e-print arXiv:quant-ph/0509101.
-
Holevo A.S. On complementary channels and the additivity problem. Probab. Theory Appl. 2007, 51:92. 10.1137/S0040585X97982244, e-print arXiv:quant-ph/0509101.
-
(2007)
Probab. Theory Appl.
, vol.51
, pp. 92
-
-
Holevo, A.S.1
-
8
-
-
77958104173
-
Mutual and Coherent Information for Infinite-Dimensional Quantum Channels
-
10.1134/S0032946010030014 e-print arXiv:1004.2495 [math-ph].
-
Holevo A.S. Shirokov M.E. Mutual and Coherent Information for Infinite-Dimensional Quantum Channels. Probl. Inf. Transm. 2010, 46:201. 10.1134/S0032946010030014, and ;e-print arXiv:1004.2495 [math-ph].
-
(2010)
Probl. Inf. Transm.
, vol.46
, pp. 201
-
-
Holevo, A.S.1
Shirokov, M.E.2
-
10
-
-
0032346814
-
Radon-Nikodym derivatives of quantum instruments
-
10.1063/1.532385.
-
Holevo A.S. Radon-Nikodym derivatives of quantum instruments. J. Math. Phys. 1998, 39:1373. 10.1063/1.532385.
-
(1998)
J. Math. Phys.
, vol.39
, pp. 1373
-
-
Holevo, A.S.1
-
11
-
-
31644449723
-
A bound on the mutual information, and properties of entropy reduction for quantum channels with inefficient measurements
-
10.1063/1.2158433.
-
Jacobs K. A bound on the mutual information, and properties of entropy reduction for quantum channels with inefficient measurements. J. Math. Phys. 2006, 47:012102. 10.1063/1.2158433.
-
(2006)
J. Math. Phys.
, vol.47
, pp. 012102
-
-
Jacobs, K.1
-
12
-
-
0000533471
-
An entropy inequality for quantum measurement
-
10.1007/BF01645778.
-
Lindblad G. An entropy inequality for quantum measurement. Commun. Math. Phys. 1972, 28:245. 10.1007/BF01645778.
-
(1972)
Commun. Math. Phys.
, vol.28
, pp. 245
-
-
Lindblad, G.1
-
13
-
-
0001335497
-
Expectation and Entropy Inequalities for Finite Quantum Systems
-
10.1007/BF01608390.
-
Lindblad G. Expectation and Entropy Inequalities for Finite Quantum Systems. Commun. Math. Phys. 1974, 39:111. 10.1007/BF01608390.
-
(1974)
Commun. Math. Phys.
, vol.39
, pp. 111
-
-
Lindblad, G.1
-
14
-
-
0035929522
-
Quantum stochastic approach to the description of quantum measurements
-
10.1088/0305-4470/34/37/316.
-
Loubenets E.R. Quantum stochastic approach to the description of quantum measurements. J. Phys. A 2001, 34:7639. 10.1088/0305-4470/34/37/316.
-
(2001)
J. Phys. A
, vol.34
, pp. 7639
-
-
Loubenets, E.R.1
-
15
-
-
78649530455
-
Information conservation and entropy change in quantum measurements
-
10.1103/PhysRevA.82.052103.
-
Luo S. Information conservation and entropy change in quantum measurements. Phys. Rev. A 2010, 82:052103. 10.1103/PhysRevA.82.052103.
-
(2010)
Phys. Rev. A
, vol.82
, pp. 052103
-
-
Luo, S.1
-
19
-
-
0001782596
-
Quantum measuring processes of continuous observables
-
10.1063/1.526000.
-
Ozawa M. Quantum measuring processes of continuous observables. J. Math. Phys. 1984, 25:79. 10.1063/1.526000.
-
(1984)
J. Math. Phys.
, vol.25
, pp. 79
-
-
Ozawa, M.1
-
20
-
-
84996315881
-
Conditional Probability and A Posteriori States in Quantum Mechanics
-
10.2977/prims/1195179625.
-
Ozawa M. Conditional Probability and A Posteriori States in Quantum Mechanics. Publ. RIMS, Kyoto Univ. 1985, 21:279. 10.2977/prims/1195179625.
-
(1985)
Publ. RIMS, Kyoto Univ.
, vol.21
, pp. 279
-
-
Ozawa, M.1
-
21
-
-
0001142169
-
On information gain by quantum measurement of continuous observable
-
10.1063/1.527179.
-
Ozawa M. On information gain by quantum measurement of continuous observable. J. Math. Phys. 1986, 27:759. 10.1063/1.527179.
-
(1986)
J. Math. Phys.
, vol.27
, pp. 759
-
-
Ozawa, M.1
-
23
-
-
77952089942
-
Continuity of the von Neumann entropy
-
10.1007/s00220-010-1007-x, e-print arXiv:0904.1963 [math-ph].
-
Shirokov M.E. Continuity of the von Neumann entropy. Commun. Math. Phys. 2010, 296:625. 10.1007/s00220-010-1007-x, e-print arXiv:0904.1963 [math-ph].
-
(2010)
Commun. Math. Phys.
, vol.296
, pp. 625
-
-
Shirokov, M.E.1
-
24
-
-
79957918892
-
-
In Ref. 21, the term quasicomplete is used. The term irreducible seems to be more reasonable, it appeared in Ref. 19 and is used in the subsequent papers.
-
In Ref. 21, the term quasicomplete is used. The term irreducible seems to be more reasonable, it appeared in Ref. 19 and is used in the subsequent papers.
-
-
-
-
25
-
-
79957882149
-
-
A quantum operation Φ is called entanglement-breaking if for an arbitrary state ω in , where is a separable Hilbert space, the operator belongs to the convex closure of the product-operators A⊗B.
-
A quantum operation Φ is called entanglement-breaking if for an arbitrary state ω in where is a separable Hilbert space, the operator belongs to the convex closure of the product-operators A⊗B.
-
-
-
|