메뉴 건너뛰기




Volumn 16, Issue 11, 2011, Pages 4250-4258

A novel application of radial basis functions for solving a model of first-order integro-ordinary differential equation

Author keywords

Collocation method; Integro ordinary differential equation; Radial basis functions; Volterra's Population Model

Indexed keywords

HEAT CONDUCTION; HYPERBOLIC FUNCTIONS; IMAGE SEGMENTATION; INTEGRODIFFERENTIAL EQUATIONS; INVERSE PROBLEMS; MATRIX ALGEBRA; RADIAL BASIS FUNCTION NETWORKS;

EID: 79957882583     PISSN: 10075704     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cnsns.2011.02.020     Document Type: Article
Times cited : (58)

References (39)
  • 1
    • 0015020648 scopus 로고
    • Vito Volterra and theoretical ecology
    • Scudo F. Vito Volterra and theoretical ecology. Theor Popul Biol 1971, 2:1-23.
    • (1971) Theor Popul Biol , vol.2 , pp. 1-23
    • Scudo, F.1
  • 2
    • 0031238061 scopus 로고    scopus 로고
    • Numerical and analytical solutions of Volterra's population model
    • TeBeest K. Numerical and analytical solutions of Volterra's population model. SIAM Rev 1997, 39:484-493.
    • (1997) SIAM Rev , vol.39 , pp. 484-493
    • TeBeest, K.1
  • 3
    • 0002811385 scopus 로고    scopus 로고
    • Analytical approximations and Padé approximants for Volterra's population model
    • Wazwaz A. Analytical approximations and Padé approximants for Volterra's population model. Appl Math Comput 1999, 100:13-25.
    • (1999) Appl Math Comput , vol.100 , pp. 13-25
    • Wazwaz, A.1
  • 4
    • 78649535365 scopus 로고
    • Population growth in a closed system
    • Small R. Population growth in a closed system. SIAM Rev 1983, 25:93-95.
    • (1983) SIAM Rev , vol.25 , pp. 93-95
    • Small, R.1
  • 5
    • 9544231668 scopus 로고    scopus 로고
    • Numerical approximations for population growth models
    • Al-Khaled K. Numerical approximations for population growth models. Appl Math Comput 2005, 160:865-873.
    • (2005) Appl Math Comput , vol.160 , pp. 865-873
    • Al-Khaled, K.1
  • 6
    • 0347758632 scopus 로고    scopus 로고
    • Rational Chebyshev Tau method for solving Volterra's population model
    • Parand K., Razzaghi M. Rational Chebyshev Tau method for solving Volterra's population model. Appl Math Comput 2004, 149:893-900.
    • (2004) Appl Math Comput , vol.149 , pp. 893-900
    • Parand, K.1    Razzaghi, M.2
  • 7
    • 57549098784 scopus 로고    scopus 로고
    • Rational Chebyshev Tau method for solving higher-order ordinary differential equations
    • Parand K., Razzaghi M. Rational Chebyshev Tau method for solving higher-order ordinary differential equations. Int J Comput Math 2004, 81:73-80.
    • (2004) Int J Comput Math , vol.81 , pp. 73-80
    • Parand, K.1    Razzaghi, M.2
  • 8
    • 2442639373 scopus 로고    scopus 로고
    • Rational Legendre approximation for solving some physical problems on semi-infinite intervals
    • Parand K., Razzaghi M. Rational Legendre approximation for solving some physical problems on semi-infinite intervals. Phys Scr 2004, 69:353-357.
    • (2004) Phys Scr , vol.69 , pp. 353-357
    • Parand, K.1    Razzaghi, M.2
  • 9
    • 34147127712 scopus 로고    scopus 로고
    • Composite spectral functions for solving Volterra's population model
    • Ramezani M., Razzaghi M., Dehghan M. Composite spectral functions for solving Volterra's population model. Chaos Soliton Fract 2007, 34:588-593.
    • (2007) Chaos Soliton Fract , vol.34 , pp. 588-593
    • Ramezani, M.1    Razzaghi, M.2    Dehghan, M.3
  • 10
    • 38849189268 scopus 로고    scopus 로고
    • Solving Volterra's population model using new second derivative multistep methods
    • Parand K., Hojjati G. Solving Volterra's population model using new second derivative multistep methods. Am J Appl Sci 2008, 5:1019-1022.
    • (2008) Am J Appl Sci , vol.5 , pp. 1019-1022
    • Parand, K.1    Hojjati, G.2
  • 11
    • 78649617737 scopus 로고    scopus 로고
    • Numerical approximations for population growth model by Rational Chebyshev and Hermite functions collocation approach: a comparison
    • Parand K., Rezaei A., Taghavi A. Numerical approximations for population growth model by Rational Chebyshev and Hermite functions collocation approach: a comparison. Math Methods Appl Sci 2010, 33:2076-2086.
    • (2010) Math Methods Appl Sci , vol.33 , pp. 2076-2086
    • Parand, K.1    Rezaei, A.2    Taghavi, A.3
  • 12
    • 59349086401 scopus 로고    scopus 로고
    • Solution of Volterra's population model via block-pulse functions and Lagrange-interpolating polynomials
    • Marzban H.R., Hoseini S., Razzaghi M. Solution of Volterra's population model via block-pulse functions and Lagrange-interpolating polynomials. Math Methods Appl Sci 2009, 32:127-134.
    • (2009) Math Methods Appl Sci , vol.32 , pp. 127-134
    • Marzban, H.R.1    Hoseini, S.2    Razzaghi, M.3
  • 13
    • 78049392226 scopus 로고    scopus 로고
    • Collocation method using Sinc and Rational Legendre functions for solving Volterra's population model
    • Parand K., Delafkar Z., Pakniat N., Pirkhedri A., Haji M.K. Collocation method using Sinc and Rational Legendre functions for solving Volterra's population model. Commun Nonlinear Sci Numer Simul 2011, 16:1811-1819.
    • (2011) Commun Nonlinear Sci Numer Simul , vol.16 , pp. 1811-1819
    • Parand, K.1    Delafkar, Z.2    Pakniat, N.3    Pirkhedri, A.4    Haji, M.K.5
  • 14
    • 34047179962 scopus 로고    scopus 로고
    • Numerical approximations and Padé approximants for a fractional population growth model
    • Momani S., Qaralleh R. Numerical approximations and Padé approximants for a fractional population growth model. Appl Math Model 2007, 31:1907-1914.
    • (2007) Appl Math Model , vol.31 , pp. 1907-1914
    • Momani, S.1    Qaralleh, R.2
  • 15
    • 56049105387 scopus 로고    scopus 로고
    • Analytical approximations for a population growth model with fractional order
    • Xu H. Analytical approximations for a population growth model with fractional order. Commun Nonlinear Sci Numer Simul 2009, 14:1978-1983.
    • (2009) Commun Nonlinear Sci Numer Simul , vol.14 , pp. 1978-1983
    • Xu, H.1
  • 16
    • 81555202994 scopus 로고    scopus 로고
    • Exp-function method for some nonlinear PDE's and a nonlinear ODE's
    • Parand K., Rad J.A. Exp-function method for some nonlinear PDE's and a nonlinear ODE's. J King Saud Univ - Sci 2010, 10.1016/j.jksus.2010.08.004.
    • (2010) J King Saud Univ - Sci
    • Parand, K.1    Rad, J.A.2
  • 17
    • 61449254412 scopus 로고    scopus 로고
    • The series solution of problems in the calculus of variations via the homotopy analysis method
    • Abbasbandy S., Shirzadi A. The series solution of problems in the calculus of variations via the homotopy analysis method. Z Naturforsch - Sect A 2009, 64:30-36.
    • (2009) Z Naturforsch - Sect A , vol.64 , pp. 30-36
    • Abbasbandy, S.1    Shirzadi, A.2
  • 18
    • 73149125766 scopus 로고    scopus 로고
    • Exact analytical solution of a nonlinear equation arising in heat transfer
    • Abbasbandy S., Shivanian E. Exact analytical solution of a nonlinear equation arising in heat transfer. Phys Lett A 2010, 374:567-574.
    • (2010) Phys Lett A , vol.374 , pp. 567-574
    • Abbasbandy, S.1    Shivanian, E.2
  • 19
    • 13244255578 scopus 로고    scopus 로고
    • Solving high order ordinary differential equations with radial basis function networks
    • Mai-Duy N. Solving high order ordinary differential equations with radial basis function networks. Int J Numer Methods Eng 2005, 62:824-852.
    • (2005) Int J Numer Methods Eng , vol.62 , pp. 824-852
    • Mai-Duy, N.1
  • 20
    • 0025210711 scopus 로고
    • Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics. II: Solutions to parabolic hyperbolic and elliptic partial differential equations
    • Kansa E. Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics. II: Solutions to parabolic hyperbolic and elliptic partial differential equations. Comput Math Appl 1990, 19:147-161.
    • (1990) Comput Math Appl , vol.19 , pp. 147-161
    • Kansa, E.1
  • 21
    • 0000246322 scopus 로고    scopus 로고
    • Application of the multiquadric method for numerical solution of elliptic partial differential equations
    • Sharan M., Kansa E., Gupta S. Application of the multiquadric method for numerical solution of elliptic partial differential equations. Appl Math Comput 1997, 84:275-302.
    • (1997) Appl Math Comput , vol.84 , pp. 275-302
    • Sharan, M.1    Kansa, E.2    Gupta, S.3
  • 22
    • 0032529187 scopus 로고    scopus 로고
    • A numerical method for heat transfer problems using collocation and radial basis functions
    • Zerroukat M., Power H., Chen C. A numerical method for heat transfer problems using collocation and radial basis functions. Int J Numer Methods Eng 1998, 42:1263-1278.
    • (1998) Int J Numer Methods Eng , vol.42 , pp. 1263-1278
    • Zerroukat, M.1    Power, H.2    Chen, C.3
  • 23
    • 0035137045 scopus 로고    scopus 로고
    • Numerical solution of differential equations using multiquadric radial basis function networks
    • Mai-Duy N., Tran-Cong T. Numerical solution of differential equations using multiquadric radial basis function networks. Neural Networks 2001, 14:185-199.
    • (2001) Neural Networks , vol.14 , pp. 185-199
    • Mai-Duy, N.1    Tran-Cong, T.2
  • 24
    • 72449158363 scopus 로고    scopus 로고
    • A method for solving partial differential equations via radial basis functions: application to the heat equation
    • Tatari M., Dehghan M. A method for solving partial differential equations via radial basis functions: application to the heat equation. Eng Anal Bound Elem 2010, 34:206-212.
    • (2010) Eng Anal Bound Elem , vol.34 , pp. 206-212
    • Tatari, M.1    Dehghan, M.2
  • 25
    • 67349194320 scopus 로고    scopus 로고
    • Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions
    • Dehghan M., Shokri A. Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions. J Comput Appl Math 2009, 230:400-410.
    • (2009) J Comput Appl Math , vol.230 , pp. 400-410
    • Dehghan, M.1    Shokri, A.2
  • 26
    • 34250678924 scopus 로고    scopus 로고
    • Numerical solution of the nonlinear Fredholm integral equations by positive definite functions
    • Alipanah A., Dehghan M. Numerical solution of the nonlinear Fredholm integral equations by positive definite functions. Appl Math Comput 2007, 190:1754-1761.
    • (2007) Appl Math Comput , vol.190 , pp. 1754-1761
    • Alipanah, A.1    Dehghan, M.2
  • 27
    • 77957361317 scopus 로고    scopus 로고
    • Comparison between two common collocation approaches based on radial basis functions for the case of heat transfer equations arising in porous medium
    • Parand K., Abbasbandy S., Kazem S., Rezaei A. Comparison between two common collocation approaches based on radial basis functions for the case of heat transfer equations arising in porous medium. Commun Nonlinear Sci Numer Simul 2011, 16:1396-1407.
    • (2011) Commun Nonlinear Sci Numer Simul , vol.16 , pp. 1396-1407
    • Parand, K.1    Abbasbandy, S.2    Kazem, S.3    Rezaei, A.4
  • 28
    • 78751558362 scopus 로고    scopus 로고
    • An improved numerical method for a class of astrophysics problems based on radial basis functions
    • Parand K., Abbasbandy S., Kazem S., Rezaei A. An improved numerical method for a class of astrophysics problems based on radial basis functions. Phys Scr 2011, 83:015011.
    • (2011) Phys Scr , vol.83 , pp. 015011
    • Parand, K.1    Abbasbandy, S.2    Kazem, S.3    Rezaei, A.4
  • 29
    • 76549122679 scopus 로고    scopus 로고
    • Comparisons between pseudospectral and radial basis function derivative approximations
    • Fornberg B. Comparisons between pseudospectral and radial basis function derivative approximations. IMA J Numer Anal 2008, 30:149-172.
    • (2008) IMA J Numer Anal , vol.30 , pp. 149-172
    • Fornberg, B.1
  • 30
    • 0035885009 scopus 로고    scopus 로고
    • Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks
    • Mai-Duy N., Tran-Cong T. Numerical solution of Navier-Stokes equations using multiquadric radial basis function networks. Int J Numer Methods Fluids 2001, 37:65-86.
    • (2001) Int J Numer Methods Fluids , vol.37 , pp. 65-86
    • Mai-Duy, N.1    Tran-Cong, T.2
  • 31
    • 0033116371 scopus 로고    scopus 로고
    • Some recent results and proposals for the use of radial basis functions in the BEM
    • Golberg M.A. Some recent results and proposals for the use of radial basis functions in the BEM. Eng Anal Bound Elem 1999, 23:285-296.
    • (1999) Eng Anal Bound Elem , vol.23 , pp. 285-296
    • Golberg, M.A.1
  • 33
    • 70350366414 scopus 로고    scopus 로고
    • A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions
    • Dehghan M., Shokri A. A meshless method for numerical solution of the one-dimensional wave equation with an integral condition using radial basis functions. Numer Algorithms 2009, 52:461-477.
    • (2009) Numer Algorithms , vol.52 , pp. 461-477
    • Dehghan, M.1    Shokri, A.2
  • 34
    • 16644385826 scopus 로고    scopus 로고
    • Adaptive radial basis function method for time dependent partial differential equations
    • Sarra S. Adaptive radial basis function method for time dependent partial differential equations. Appl Numer Math 2005, 54:79-94.
    • (2005) Appl Numer Math , vol.54 , pp. 79-94
    • Sarra, S.1
  • 35
    • 0003028016 scopus 로고
    • The parameter r2 in multiquadric interpolation
    • Carlson R., Foley T. The parameter r2 in multiquadric interpolation. Comput Math Appl 1991, 21:29-42.
    • (1991) Comput Math Appl , vol.21 , pp. 29-42
    • Carlson, R.1    Foley, T.2
  • 36
    • 0033434521 scopus 로고    scopus 로고
    • An algorithm for selecting a good parameter c in radial basis function interpolation
    • Rippa S. An algorithm for selecting a good parameter c in radial basis function interpolation. Adv Comput Math 1999, 11:193-210.
    • (1999) Adv Comput Math , vol.11 , pp. 193-210
    • Rippa, S.1
  • 37
    • 0036467591 scopus 로고    scopus 로고
    • Observations on the behavior of radial basis function approximations near boundaries
    • Fornberg B., Dirscol T., Wright G., Charles R. Observations on the behavior of radial basis function approximations near boundaries. Comput Math Appl 2002, 43:473-490.
    • (2002) Comput Math Appl , vol.43 , pp. 473-490
    • Fornberg, B.1    Dirscol, T.2    Wright, G.3    Charles, R.4
  • 38
    • 17944366433 scopus 로고    scopus 로고
    • Radial basis function scattered data interpolation and the meshless method of numerical solution of PDEs
    • Wu Z. Radial basis function scattered data interpolation and the meshless method of numerical solution of PDEs. J Eng Math 2002, 19:1-12.
    • (2002) J Eng Math , vol.19 , pp. 1-12
    • Wu, Z.1
  • 39
    • 14544290310 scopus 로고
    • Local error estimates for radial basis function interpolation of scattered data
    • Wu Z., Schaback R. Local error estimates for radial basis function interpolation of scattered data. IMA J Numer Anal 1993, 13:13-27.
    • (1993) IMA J Numer Anal , vol.13 , pp. 13-27
    • Wu, Z.1    Schaback, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.