메뉴 건너뛰기




Volumn 54, Issue 5-6, 2011, Pages 1238-1251

Conditional symmetries and exact solutions of the diffusive Lotka-Volterra system

Author keywords

Diffusive Lotka Volterra system; Exact solution; Lie symmetry; Non classical symmetry; Q conditional symmetry; Reaction diffusion system

Indexed keywords

EXACT SOLUTION; LIE SYMMETRIES; LOTKA-VOLTERRA SYSTEMS; NON-CLASSICAL SYMMETRY; Q-CONDITIONAL SYMMETRY; REACTION-DIFFUSION SYSTEM;

EID: 79957865303     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mcm.2011.03.035     Document Type: Article
Times cited : (30)

References (32)
  • 1
    • 0002011401 scopus 로고
    • The chemical basis of morphogenesis
    • Turing A.M. The chemical basis of morphogenesis. Phil. Trans. R. Soc. Lond. 1952, 237:37-72.
    • (1952) Phil. Trans. R. Soc. Lond. , vol.237 , pp. 37-72
    • Turing, A.M.1
  • 2
    • 0034695297 scopus 로고    scopus 로고
    • Lie symmetries of nonlinear multidimensional reaction-diffusion systems I
    • 7839-7841
    • Cherniha R., King J.R. Lie symmetries of nonlinear multidimensional reaction-diffusion systems I. J. Phys. A 2000, 33:267-282. 7839-7841.
    • (2000) J. Phys. A , vol.33 , pp. 267-282
    • Cherniha, R.1    King, J.R.2
  • 3
    • 0037449824 scopus 로고    scopus 로고
    • Lie symmetries of nonlinear multidimensional reaction-diffusion systems II
    • Cherniha R., King J.R. Lie symmetries of nonlinear multidimensional reaction-diffusion systems II. J. Phys. A 2003, 36:405-425.
    • (2003) J. Phys. A , vol.36 , pp. 405-425
    • Cherniha, R.1    King, J.R.2
  • 4
    • 34147100260 scopus 로고    scopus 로고
    • Group classification of systems of non-linear reaction-diffusion equations
    • Nikitin A.G. Group classification of systems of non-linear reaction-diffusion equations. Ukr. Math. Bull. 2005, 2:153-204.
    • (2005) Ukr. Math. Bull. , vol.2 , pp. 153-204
    • Nikitin, A.G.1
  • 9
    • 21544451665 scopus 로고    scopus 로고
    • A diffusive Lotka-Volterra system: Lie symmetries, exact and numerical solutions
    • Cherniha R., Dutka V. A diffusive Lotka-Volterra system: Lie symmetries, exact and numerical solutions. Ukrainian Math. J. 2004, 56:1665-1675.
    • (2004) Ukrainian Math. J. , vol.56 , pp. 1665-1675
    • Cherniha, R.1    Dutka, V.2
  • 10
    • 42449087619 scopus 로고    scopus 로고
    • New conditional symmetries and exact solutions of reaction-systems with power diffusivities
    • Cherniha R., Pliukhin O. New conditional symmetries and exact solutions of reaction-systems with power diffusivities. J. Phys. A 2008, 41:185208-185222.
    • (2008) J. Phys. A , vol.41 , pp. 185208-185222
    • Cherniha, R.1    Pliukhin, O.2
  • 12
    • 0037953614 scopus 로고
    • Symmetries of linear, C-integrable, S-integrable and nonintegrable equations and dynamical systems
    • World Sci. Publ., River Edge
    • Nucci M.C. Symmetries of linear, C-integrable, S-integrable and nonintegrable equations and dynamical systems. Nonlinear Evolution Equations and Dynamical Systems 1992, 374-381. World Sci. Publ., River Edge.
    • (1992) Nonlinear Evolution Equations and Dynamical Systems , pp. 374-381
    • Nucci, M.C.1
  • 13
    • 43949149919 scopus 로고
    • Symmetry reductions and exact solutions of a class of nonlinear heat equations
    • Clarkson P.A., Mansfield E.L. Symmetry reductions and exact solutions of a class of nonlinear heat equations. Physica D 1993, 70:250-288.
    • (1993) Physica D , vol.70 , pp. 250-288
    • Clarkson, P.A.1    Mansfield, E.L.2
  • 14
    • 0028196094 scopus 로고
    • Nonclassical symmetry reductions of the linear diffusion equation with a nonlinear source
    • Arrigo D.J., Broadbridge P., Hill J.M. Nonclassical symmetry reductions of the linear diffusion equation with a nonlinear source. IMA J. Appl. Math. 1994, 52:1-24.
    • (1994) IMA J. Appl. Math. , vol.52 , pp. 1-24
    • Arrigo, D.J.1    Broadbridge, P.2    Hill, J.M.3
  • 15
    • 21844488751 scopus 로고
    • Nonclassical symmetries for nonlinear diffusion and absorption
    • Arrigo D.J., Hill J.M. Nonclassical symmetries for nonlinear diffusion and absorption. Stud. Appl. Math. 1995, 94:21-39.
    • (1995) Stud. Appl. Math. , vol.94 , pp. 21-39
    • Arrigo, D.J.1    Hill, J.M.2
  • 16
    • 0347252623 scopus 로고    scopus 로고
    • Evolution equations, invariant surface conditions and functional separation of variables
    • Pucci E., Saccomandi G. Evolution equations, invariant surface conditions and functional separation of variables. Physica D 2000, 139:28-47.
    • (2000) Physica D , vol.139 , pp. 28-47
    • Pucci, E.1    Saccomandi, G.2
  • 17
    • 22444454375 scopus 로고    scopus 로고
    • Symmetries, ansatz and exact solutions of nonlinear second-order evolution equations with convection term
    • Cherniha R., Serov M.I. Symmetries, ansatz and exact solutions of nonlinear second-order evolution equations with convection term. European J. Appl. Math. 1998, 9:527-542.
    • (1998) European J. Appl. Math. , vol.9 , pp. 527-542
    • Cherniha, R.1    Serov, M.I.2
  • 18
    • 33750625789 scopus 로고    scopus 로고
    • New Q-conditional symmetries and exact solutions of some reaction-diffusion-convection equations arising in mathematical biology
    • Cherniha R. New Q-conditional symmetries and exact solutions of some reaction-diffusion-convection equations arising in mathematical biology. J. Math. Anal. Appl. 2007, 326:783-799.
    • (2007) J. Math. Anal. Appl. , vol.326 , pp. 783-799
    • Cherniha, R.1
  • 19
    • 34547772183 scopus 로고    scopus 로고
    • New conditional symmetries and exact solutions of nonlinear reaction-diffusion-convection equations
    • Cherniha R., Pliukhin O. New conditional symmetries and exact solutions of nonlinear reaction-diffusion-convection equations. J. Phys. A 2007, 40:10049-10070.
    • (2007) J. Phys. A , vol.40 , pp. 10049-10070
    • Cherniha, R.1    Pliukhin, O.2
  • 22
    • 3543050736 scopus 로고    scopus 로고
    • A robust cubic reaction-diffusion system for gene propagation
    • Bradshaw-Hajek B.H., Broadbridge P. A robust cubic reaction-diffusion system for gene propagation. Math. Comput. Modelling 2004, 39:1151-1163.
    • (2004) Math. Comput. Modelling , vol.39 , pp. 1151-1163
    • Bradshaw-Hajek, B.H.1    Broadbridge, P.2
  • 25
    • 0000478462 scopus 로고
    • The general similarity solution of the heat equation
    • Bluman G.W., Cole J.D. The general similarity solution of the heat equation. J. Math. Mech. 1969, 18:1025-1042.
    • (1969) J. Math. Mech. , vol.18 , pp. 1025-1042
    • Bluman, G.W.1    Cole, J.D.2
  • 26
    • 30344431778 scopus 로고    scopus 로고
    • Non-classical symmetry and Riemann invariants
    • Murata S. Non-classical symmetry and Riemann invariants. Internat. J. Non-Linear Mech. 2006, 41:242-246.
    • (2006) Internat. J. Non-Linear Mech. , vol.41 , pp. 242-246
    • Murata, S.1
  • 27
    • 0038349353 scopus 로고    scopus 로고
    • Nonlinear systems of the Burgers-type equations: Lie and Q-conditional symmetries, ansatz and solutions
    • Cherniha R., Serov M. Nonlinear systems of the Burgers-type equations: Lie and Q-conditional symmetries, ansatz and solutions. J. Math. Anal. Appl. 2003, 282:305-328.
    • (2003) J. Math. Anal. Appl. , vol.282 , pp. 305-328
    • Cherniha, R.1    Serov, M.2
  • 28
    • 77955274103 scopus 로고    scopus 로고
    • Nonclassical symmetries of a class of Burgers' systems
    • Arrigo D.J., Ekrut D.A., Fliss J.R., Le Long Nonclassical symmetries of a class of Burgers' systems. J. Math. Anal. Appl. 2010, 371:813-820.
    • (2010) J. Math. Anal. Appl. , vol.371 , pp. 813-820
    • Arrigo, D.J.1    Ekrut, D.A.2    Fliss, J.R.3    Le, L.4
  • 29
    • 78649641372 scopus 로고    scopus 로고
    • Conditional symmetries for systems of PDEs: new definition and its application for reaction-diffusion systems
    • 405207
    • Cherniha R. Conditional symmetries for systems of PDEs: new definition and its application for reaction-diffusion systems. J. Phys. A: Math. Theor. 2010, 43:405207. 13pp.
    • (2010) J. Phys. A: Math. Theor. , vol.43 , pp. 13
    • Cherniha, R.1
  • 32
    • 0346183551 scopus 로고    scopus 로고
    • Exact solutions of a competition-diffusion system
    • Rodrigo M., Mimura M. Exact solutions of a competition-diffusion system. Hiroshima Math. J. 2000, 30:257-270.
    • (2000) Hiroshima Math. J. , vol.30 , pp. 257-270
    • Rodrigo, M.1    Mimura, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.