메뉴 건너뛰기




Volumn 6677 LNCS, Issue PART 3, 2011, Pages 548-557

BursT: A dynamic term weighting scheme for mining microblogging messages

Author keywords

information retrieval; social mining; social networks; term weighting scheme; text mining

Indexed keywords

CLUSTERING METHODS; CONCEPT DRIFTS; DAILY LIVES; DYNAMIC ENVIRONMENTS; EVENT MINING; HUMAN NEEDS; MESSAGE STREAMS; MICROBLOGGING; SHORT MESSAGE; SLIDING WINDOW TECHNIQUES; SOCIAL MINING; SOCIAL NETWORKS; TERM WEIGHTING; TERM WEIGHTING SCHEME; TEXT MINING; WEIGHTING TECHNIQUES;

EID: 79957864512     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-21111-9_62     Document Type: Conference Paper
Times cited : (36)

References (12)
  • 9
    • 74049102320 scopus 로고    scopus 로고
    • Integrating Web-based Intelligence Retrieval and Decision-making from the Twitter Trends Knowledge Base
    • ACM, Hong Kong
    • Cheong, M., Lee, V.: Integrating Web-based Intelligence Retrieval and Decision-making from the Twitter Trends Knowledge Base. In: Proceeding of the 2nd ACM Workshop on Social Web Search and Mining, pp. 1-8. ACM, Hong Kong (2009)
    • (2009) Proceeding of the 2nd ACM Workshop on Social Web Search and Mining , pp. 1-8
    • Cheong, M.1    Lee, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.