메뉴 건너뛰기




Volumn 15, Issue 3, 2011, Pages 319-341

A novel SVM modeling approach for highly imbalanced and overlapping classification

Author keywords

Highly imbalanced classification; inseparability; nonlinear; overlapping; SVM

Indexed keywords

IMBALANCED CLASSIFICATION; INSEPARABILITY; NONLINEAR; OVERLAPPING; SVM;

EID: 79957852245     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/IDA-2010-0470     Document Type: Article
Times cited : (14)

References (47)
  • 3
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • PII S0031320396001422
    • Andrew P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Journal of Pattern Recognition 30(7) (Jul 1997), 1145-1159. (Pubitemid 127406521)
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 5
    • 0004094721 scopus 로고    scopus 로고
    • Massachusetts Institute of Technology Press
    • Bernhard Scholkopf and Alexander J. Smola, Learning with Kernels,Massachusetts Institute of Technology Press, p. 204, 2002.
    • (2002) Learning with Kernels , pp. 204
    • Scholkopf, B.1    Smola, A.J.2
  • 6
    • 32344438970 scopus 로고    scopus 로고
    • Extreme rebalancing for SVMs: A case study
    • Bhavani Raskutti and Adam Kowalczyk, Extreme rebalancing for SVMs: A case study, SIGKDD Explorations 6(1) (2004), 60-69.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 60-69
    • Raskutti, B.1    Kowalczyk, A.2
  • 8
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • N.V. Chawla, N. Japkowicz and A. Kolcz, Editorial: Special issue on learning from imbalanced data sets, SIGKDD Explorations 6(1) (2004), 1-6.
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kolcz, A.3
  • 9
    • 9444297357 scopus 로고    scopus 로고
    • SMOTEBoost: Improving Prediction of the Minority Class in Boosting
    • Knowledge Discovery in Databases: PKDD 2003
    • N.V. Chawla, A. Lazarevic, O. Halll et al., SMOTEBoost: Improving prediction of the minority class in boosting: Knowledge discovery in databases. In Proceeding the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases, pp. 107-119, 2003. (Pubitemid 37231089)
    • (2003) LECTURE NOTES IN COMPUTER SCIENCE , Issue.2838 , pp. 107-119
    • Chawla, N.V.1    Lazarevic, A.2    Hall, L.O.3    Bowyer, K.W.4
  • 10
    • 34249753618 scopus 로고
    • Support vector networks
    • C. Cortes and V.N. Vapnik, Support Vector Networks, Machine Learning (20) (1995), 273-297.
    • (1995) Machine Learning , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.N.2
  • 15
    • 0037410687 scopus 로고    scopus 로고
    • Choosing k for two-class nearest neighbour classifiers with unbalanced classes
    • DOI 10.1016/S0167-8655(02)00394-X
    • D.J. Hand and Vinciottiv, Choosing k for twoclass nearest neighbour classifiers with unbalanced classes, Journal of Pattern Recognition Letters (24) (2003), 1555-1562. (Pubitemid 36225860)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.9-10 , pp. 1555-1562
    • Hand, D.J.1    Vinciotti, V.2
  • 18
    • 27144501672 scopus 로고    scopus 로고
    • Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
    • Advances in Intelligent Computing: International Conference on Intelligent Computing, ICIC 2005. Proceedings
    • Hui Han, WenYuan Wang and BingHuan Mao, BorderlineSMOTE: A new oversampling method in imbalanced data sets learning, International Conference on Intelligent Computing. Lecture Notes in Computer Science 3644, pp. 878-887. Springer-Verlag, 2005. (Pubitemid 41491129)
    • (2005) Lecture Notes in Computer Science , vol.3644 , Issue.PART 1 , pp. 878-887
    • Han, H.1    Wang, W.-Y.2    Mao, B.-H.3
  • 19
    • 33749249600 scopus 로고    scopus 로고
    • The relationship between PrecisionRecall and ROC curves
    • Jesse Davis and Mark Goadrich, The relationship between PrecisionRecall and ROC curves, Proceeding of the 23rd ICML, pp. 233-240, 2006.
    • (2006) Proceeding of the 23rd ICML , pp. 233-240
    • Davis, J.1    Goadrich, M.2
  • 20
    • 77951182959 scopus 로고    scopus 로고
    • Improving SVM classification on imbalanced data sets in distance spaces, ninth
    • S. KoknarTezel and L.J. Latecki, Improving SVM Classification on Imbalanced Data Sets in Distance Spaces, Ninth IEEE International Conference on Data Mining, pp. 259-267, 2009.
    • (2009) IEEE International Conference on Data Mining , pp. 259-267
    • Tezel, S.K.1    Latecki, L.J.2
  • 21
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • M. Kubat, R. Holte and S. Matwin, Machine Learning for the Detection of Oil Spills in Satellite Radar Images, Machine Learning (30) (1998), 195-215.
    • (1998) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 26
    • 84949479983 scopus 로고    scopus 로고
    • Concept-Learning in the Presence of Between-Class and Within-Class Imbalances
    • Advances in Artificial Intelligence
    • Nathalie Japkowicz, Conceptlearning in the presence of betweenclass and withinclass imbalances, in Proceedings of the Fourteenth Conference of the Canadian Society for Computational Studies of Intelligence, Ottawa, Canada, pp. 67-77, June 2001. (Pubitemid 33276088)
    • (2001) LECTURE NOTES IN COMPUTER SCIENCE , Issue.2056 , pp. 67-77
    • Japkowicz, N.1
  • 30
    • 0032280519 scopus 로고    scopus 로고
    • Boosting the margin: A new explanation for the effectiveness of voting methods
    • Robert E. Schapire, Yoav Freund, Peter Bartlett and Wee SunLee, Boosting the margin:a new explanation for the effectiveness of voting methods, Journal of Institute of Mathematical Statistics (26) (1998), 1651-1686. (Pubitemid 128376902)
    • (1998) Annals of Statistics , vol.26 , Issue.5 , pp. 1651-1686
    • Schapire, R.E.1    Freund, Y.2    Bartlett, P.3    Lee, W.S.4
  • 31
    • 77953089698 scopus 로고    scopus 로고
    • FSVMCIL: Fuzzy support vector machines for class imbalance learning
    • Rukshan Batuwita and Vasile Palade, FSVMCIL: Fuzzy Support Vector Machines for Class Imbalance Learning, IEEE Transactions on Fuzzy Systems, pp. 1-1, 2010.
    • (2010) IEEE Transactions on Fuzzy Systems , pp. 1-1
    • Batuwita, R.1    Palade, V.2
  • 32
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary undersampling for classification with imbalanced datasetsproposals and taxonomy
    • Salvador García and Francisco Herrera, Evolutionary Undersampling for Classification with Imbalanced datasetsProposals and Taxonomy, Journal of Evolutionary Computation 17(3) (2009), 275-306.
    • (2009) Journal of Evolutionary Computation , vol.17 , Issue.3 , pp. 275-306
    • García, S.1    Herrera, F.2
  • 37
    • 71249086896 scopus 로고    scopus 로고
    • A genetic learning of the fuzzy rulebased classification system granularity for highly imbalanced datasets
    • P. Villar, A. Fernandez and F. Herrera, A Genetic Learning of the Fuzzy RuleBased Classification System Granularity for Highly Imbalanced DataSets, IEEE International Conference on Fuzzy Systems, pp. 1689-1694, 2009.
    • (2009) IEEE International Conference on Fuzzy Systems , pp. 1689-1694
    • Villar, P.1    Fernandez, A.2    Herrera, F.3
  • 39
    • 20844441675 scopus 로고    scopus 로고
    • KBA: Kernel boundary alignment considering imbalanced data distribution
    • DOI 10.1109/TKDE.2005.95
    • Wu Gang and E.Y. KBA, Chang, kernel boundary alignment considering imbalanced data distribution, Journal of IEEE Trans on Knowledge and Data Engineering 17(6) (2005), 786-795. (Pubitemid 40860458)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.6 , pp. 786-795
    • Wu, G.1    Chang, E.Y.2
  • 41
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • DOI 10.1016/j.patcog.2007.04.009, PII S0031320307001835
    • Yanmin Sun, Mohamed S. Kamel, Andrew K.C. Wong and Yang Wang, Costsensitive boosting for classification of imbalanced data, Journal of pattern recognition (40) (2007), 3358-3378. (Pubitemid 47223287)
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 45
    • 51749094851 scopus 로고    scopus 로고
    • Learning imbalanced data sets with a minmax modular support vector machine
    • ZhiFei Ye and BaoLiang Lu, Learning Imbalanced Data Sets with a MinMax Modular Support Vector Machine, International Joint Conference on Neural Networks, pp. 1673-1678, 2007.
    • (2007) International Joint Conference on Neural Networks , pp. 1673-1678
    • Ye, Z.F.1    Lu, B.L.2
  • 46
    • 33750737002 scopus 로고    scopus 로고
    • Onmulticlass costsensitive learning
    • Boston, MA. Databases, CavtatDubrovnik, Croatia, pp. 107-119, September, 2003
    • Z.H. Zhou andX.Y. Liu,Onmulticlass costsensitive learning, Proceedings of the 21stNationalConference on Artificial Intelligence, pages 567-572, Boston, MA, 2006. Databases, CavtatDubrovnik, Croatia, pp. 107-119, September, 2003
    • (2006) Proceedings of the 21stNationalConference on Artificial Intelligence , pp. 567-572
    • Zhou, Z.H.1    Liu, X.Y.2
  • 47
    • 31344442851 scopus 로고    scopus 로고
    • Training costsensitive neural networks with methods addressing the class imbalance problem
    • Z.H. Zhou and X.Y. Liu, Training costsensitive neural networks with methods addressing the class imbalance problem, IEEE Transactions on Knowledge and Data Engineering 18(1) (2006), 63-77.
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.H.1    Liu, X.Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.